期刊文献+

改进的云自适应粒子群优化算法 被引量:10

Improved adaptive particle swarm optimization algorithm based on cloud theory
下载PDF
导出
摘要 为了提高基本PSO算法搜索性能和个体寻优能力,加快收敛速度,提出一种新的云自适应粒子群优化算法(CPSO)。此算法利用云滴具有随机性、稳定倾向性等特点,结合不同粒子与全局最优点的距离动态变化的性质,提出云自适应调整算法用于计算惯性权重,并对新算法进行了描述。通过典型函数优化实验表明,该算法较基本PSO明显提高了全局搜索能力和收敛速度,改善了优化性能。 For the purpose of improving the basic PSO’s search performance and individual optimizing ability,speeding up the convergence,presented an adaptive particle swarm optimization based on cloud theory ( CPSO) ,relative to the basic PSO algorithm. The inertia weight was adaptively varied depending on X-conditional cloud generator. The inertia weight had the stable tendency and randomness property because of the cloud model and the distance between the particle and the current optimal position. Experimental results show CPSO can greatly improve the global convergence ability and enhance the rate of convergence.
作者 张艳琼
出处 《计算机应用研究》 CSCD 北大核心 2010年第9期3250-3252,共3页 Application Research of Computers
关键词 粒子群优化 自适应参数调整 云模型 全局最优性 particle swarm optimization( PSO) adaptive parameter adjusting cloud theory global optimality
  • 相关文献

参考文献9

  • 1EBERHART R C,KENNEDY J.A new optimizer using particle swarm theory[C]//Proc of the 6th International Symposium on Micro Machine and Human Science.Nagoya:[s.n.],1995:39-43.
  • 2KENNEDY J,EBERHART R C.Particle swarm optimization[C]//Proc of IEEE International Conference on Neural Networks.Perth:[s.n.],1995:56-62.
  • 3SHI Yu-hui,EBERHART R C.A modified particle swarm optimizer[C]//Proc of IEEE Conference on Evolutionary Computation.Piscataway:[s.n.],1998:69-73.
  • 4SHI Yu-hui,EBERHART R C.Fuzzy adaptive particle swarm optimization[C]//Proc of Congress on Evolutionary Computation.Seoul:[s.n.],2001:101-106.
  • 5LOVBJERG M,RASMUSSEN T K,KRINK T.Hybrid particle swarm optimizer with breeding and subpopulation[C]//Proc of Congress on Evolutionary Computation.Seoul:[s.n.],2001:45-53.
  • 6CIUPRINA G,LOAN D,MUNTEANU I.Use of intelligent-particle swarm optimization in electromagnetics[J].IEEE Trans on Magnetics,2002,38(2):1037-1040.
  • 7BERGH F,ENGELBRECHT A P.A cooperative approach to particle swarm optimization[J].IEEE Trans on Evolutionary Computation,2004,8(3):225-239.
  • 8ZHU Yun-fang,DAI Chao-hua,CHEN Wei-rong,et al.Adaptive probabilities of crossover and mutation in genetic algorithm based on cloud generators[J].Journal of Computational Information Systems,2005,1(4):671-678.
  • 9刘建华,樊晓平,瞿志华.一种惯性权重动态调整的新型粒子群算法[J].计算机工程与应用,2007,43(7):68-70. 被引量:49

二级参考文献6

  • 1曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:160
  • 2窦全胜,周春光,马铭.粒子群优化的两种改进策略[J].计算机研究与发展,2005,42(5):897-904. 被引量:39
  • 3Eberhart R C,Kennedy J.A new optimizer using particle swarm theory[C]//The 6^th Int'l Symposium on Micro Machine and Human Science,Nagoya,Japan,1995.
  • 4Kennedy J,Eberhart R C.Particle Swarm Optimization[C]//Proc IEEE Int'l Conf Neural Networks.Piscataway,NJ:IEEE Service Center,1995:1942-1948.
  • 5Shi Y,Eberhart R C.A modified particle swarm optimizer[C]//Proc the IEEE Int'l Conf Evolutionary Computation.NJ:IEEE Press,1998:69-73.
  • 6Zhang Li-ping,Yu Huan-jun,Hu Shang-xu.Optimal choice of parameters for Particle Swarm Optimization[J].Journal of Zhejiang Unverisity,2005,6A (6):528-534.

共引文献48

同被引文献85

引证文献10

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部