期刊文献+

复杂约束条件下的混合粒子群优化算法 被引量:2

Hybrid particle swarm optimization algorithm for optimization problem with complicated constraint condition
下载PDF
导出
摘要 针对具有复杂约束条件的优化问题,提出了一种混合粒子群算法。该混合算法在将标准粒子群算法与线性搜索法有机结合的基础上,依次对粒子的每一维变量进行适当变化并同时判断其变化的效果。最后进行了数值实验,其结果表明,所提出的混合粒子群算法对于具有复杂有约束条件的优化问题有较好的优化效果。 Focused on the study of the optimization problem with complicated constraint condition,this paper proposed the hybrid particle swarm optimization ( PSO) algorithm. Firstly,flexibly combined the standard PSO algorithm with the line search method. Then,adaptively and respectively modified each variable of the particle and gave the searching result simultaneously. Finally,gave the digit experiment. The result shows the proposed hybrid PSO algorithm can obtain a satisfied result for the optimization problem with complicated constraint condition.
作者 丁雷
出处 《计算机应用研究》 CSCD 北大核心 2010年第9期3256-3258,3267,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(60702076) 湖南省自然科学基金资助项目(07JJ6109)
关键词 复杂约束条件 混合粒子群算法 线性搜索 变量 综合信息 complicated constraint condition hybrid particle swarm optimization line search variables synthetical information
  • 相关文献

参考文献19

  • 1IRUTHAYARJAN M W,BASKAR S.Evolutionary algorithms based design of multivariable PID controller[J].Expert Systems with Applications,2009,36(5):9159-9167.
  • 2YILDIZ A R.A novel hybrid immune algorithm for global optimization in design and manufacturing[J].Robotics and Computer-Integra-ted Manufacturing,2009,25(2):261-270.
  • 3HO P Y,SHIMIZU K.Evolutionary constrained optimization using an addition of ranking method and a percentage-based tolerance value adjustment scheme[J].Information Sciences,2007,177(14):2985-3004.
  • 4KENNEDY J,EBERHART R C.Particle swarm optimization[C]//Proc of IEEE International Conference on Neural Networks.Perth:IEEE Press,1995:1942-1948.
  • 5EBERHART R C,KENNEDY J.A new optimizer using particles swarm theory[C]//Proc of the 6th International Symposium on Micro Machine and Human Science.Nagoya:IEEE Press,1995:39-43.
  • 6HE Q,WANG Ling.A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization[J].Applied Mathematics and Computation,2007,186(2):1407-1422.
  • 7LUO Yi-qing,YUAN Xi-gang,LIU Yong-jiang.An improved PSO algorithm for solving nonconvex NLP/MINLP problems with equality constraints[J].Computers & Chemical Engineering,2007,31(3):153-162.
  • 8AKJIRATIKARL C,YENRADEE P,DRAKE P R.PSO-based algorithm for home care worker scheduling in the UK[J].Computers & Industrial Engineering,2007,53(4):559-583.
  • 9丁雷,吴敏,曹卫华,王春生.基于混合粒子群算法的铅锌烧结过程产量质量优化[J].中国有色金属学报,2008,18(6):1152-1158. 被引量:4
  • 10BERGH F van den.An analysis of particle swarm optimizers[D].South Africa:University of Pretoria,2002.

二级参考文献26

  • 1王雅琳,桂卫华,阳春华,陈晓方,张传福.基于综合建模方法的铅锌烧结块成分预测[J].中南大学学报(自然科学版),2005,36(1):113-118. 被引量:3
  • 2王勇,蔡自兴,曾威,刘慧.求解约束优化问题的一种新的进化算法[J].中南大学学报(自然科学版),2006,37(1):119-123. 被引量:11
  • 3潘峰,陈杰,甘明刚,蔡涛,涂序彦.粒子群优化算法模型分析[J].自动化学报,2006,32(3):368-377. 被引量:67
  • 4Michalewicz Z, Schoenauer M. Evolutionary algorithms for constrained parameter optimization problems. Evolutionary Computation, 1996,4(1):1~32.
  • 5Michalewicz Z. Genetic algorithms, Numerical optimization and constraints. In: Esheiman LJ, ed. Proceedings of the 6th International Conference on Genetic Algorithms. San Mateo: Morgan Kanfmann Publishers, 1995 151~158.
  • 6Deb K. An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering,2000,186(2--4):311 ~338.
  • 7Runarsson TP, Yao X. Stochastic ranking for constrained evolutionary optimization. IEEE Transaclons on Evolutionary Computation, 2000,4(3):284-294.
  • 8Zitzler E, Thiele L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 1999,3(4):257~271.
  • 9Beyer H-G, Deb K. On self-adaptive features in real-parameter evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 2001,5(3):250--270.
  • 10Ono I, Kita H, Kobayashi S. A robust real-coded genetic algorithm using unimodal normal distribution crossover augmented by uniform crossover: effects of self adaptation of crossover probabilities. In: Banzhaf W, Daida J, Eiben E, eds. GECCO'99:Proceedings of the Genetic and Evolutionary Computation Conference. San Mateo: Morgan Kaufmann Publishers, 1999. 496~503.

共引文献58

同被引文献16

  • 1高鹰,谢胜利.混沌粒子群优化算法[J].计算机科学,2004,31(8):13-15. 被引量:104
  • 2李宁,邹彤,孙德宝.车辆路径问题的粒子群算法研究[J].系统工程学报,2004,19(6):596-600. 被引量:52
  • 3孟红记,郑鹏,梅国晖,谢植.基于混沌序列的粒子群优化算法[J].控制与决策,2006,21(3):263-266. 被引量:76
  • 4高尚,杨静宇.混沌粒子群优化算法研究[J].模式识别与人工智能,2006,19(2):266-270. 被引量:76
  • 5Wu YW, Shih H-A, Chan H-C. The Analytic Network Process for Partner Selection Criteria in Strategic Alliances [J]. Expert Systems with Applications ,2009,36(3) :4646-4653.
  • 6Fei Ye,Yi-Na Li. Group Multi-Attribute Decision Model to Partner Selection in the Formation of Virtual Enterprise under Incomplete Information[J]. Expert Systems with Applications, 2009,36(5) : 9350- 9357.
  • 7Jungtae Mun,Moonsoo Shin,Kyunghuy Lee,Mooyoung Jung. Manufacturing Enterprise Collaboration Based on a Goal-Oriented Fuzzy Trust Evaluation Model in a Virtual Enterprise [J]. Computer & Industrial Engineering, 2009,56(3 ) : 888-901.
  • 8Rajesh Kumar,Debendra Sharma,Abhinav Sadu. A Hybrid Multi-Agent Based Particle Swarm Optimizstion Algorithm for Economic Power Dispatch [J]. Electrical Power and Energy Systems,2011,33 ( 1 ) : 115- 123.
  • 9R J Kuo,S Y Hong,Y C Huang. Integration of Particle Swarm Optimization-Based Fuzzy Neural Network and Artificial Neural Network for Supplier Selection [J].Applied Mathematical Modelling,2020,34 ( 12 ) : 3976-3990.
  • 10SHI Y H, EBERHART R C. A modified particle swarm optimizer [ C ]//Proc of 1EEE Press International Conference on Evolutionary Computation. [ S. l ] .. IEEE, 1998:69-73.

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部