期刊文献+

基于GD-FNN的金融股指预测模型 被引量:5

Prediction model of financial stock index based on GD-FNN
下载PDF
导出
摘要 针对股票市场内部结构复杂性和外部因素多变性,构建一种基于椭圆基函数且能够动态调整网络结构的广义动态模糊神经网络模型对金融股指进行预测。以上证指数为例,在价格和成交量的基础上,将与股票市场密切相关的宏观经济指标引入模型预测指标体系。通过滑动时间窗对数据集进行处理,提高了模型预测准确性并降低了运算时间。与其他神经网络模型预测效果进行比较,结果表明提出的模型具有较好的预测效果。 Aiming at the complexity of inside structure and variability of external factors in system of stock market which make stock market prediction a complex problem,this paper proposed GD-FNN financial index prediction model which is based on elliptic basis function and could dynamically adjust the network structure. Set the predictive index system of GD-FNN which involved Shanghai composite index’s price and volume,analyzed macroeconomic indicators closely related to stock market and long-run equilibrium and cause and effect relationship among the variables. In order to get optimized result-parameters of model with fixed-length time series data sets,set a sliding window,which could improve model prediction efficiency and reduce computation time. GD-FNN shows smaller deviation and higher accuracy in prediction of Shanghai composite index,comparing with other neural network model.
出处 《计算机应用研究》 CSCD 北大核心 2010年第9期3272-3275,3278,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(70771008) 中央高校基本科研业务费专项基(FRF-AS-09-007B) 北京科技大学博士研究生科研基金资助项目
关键词 广义动态模糊神经网络 金融股指预测 预测指标体系 动态模糊规则抽取 滑动时间窗 金融非线性系统辨识 GD-FNN( generalized dynamic fuzzy neural network) financial stock index prediction predictive index system dynamic fuzzy rule extraction sliding window financial nonlinear system identification
  • 相关文献

参考文献8

二级参考文献26

  • 1刘瑞兰,苏宏业,褚健.模糊神经网络的混合学习算法及其软测量建模[J].系统仿真学报,2005,17(12):2878-2881. 被引量:14
  • 2胡玉玲,曹建国.基于模糊神经网络的动态非线性系统辨识研究[J].系统仿真学报,2007,19(3):560-562. 被引量:23
  • 3Lin C T, Lee C S G. Neural Fuzzy System: A Neural-Fuzzy Synergism to Intelligent Systems[M]. Englewood Cliffs, N J: Prentice-Hall, 1996.
  • 4Jang J-S R, Sun C T, Mizutani E. Neuro-Fuzzy and Soft Computing[M]. Englewood Cliffs,NJ: Prentice--Hall, 1997.
  • 5Lee S, Kil R M. A Gaussian Potential Function Network with Hierarchically Self-Organizing Learning [J]. Neural Networks, 1991 (4) : 207-224.
  • 6Lu Y, Sundararajan N, Saratchandran P. A Sequential Learning Scheme for Function Approximation by Using Minimal Radial Basis Function Networks[J]. Neural Computation, 1997(9) : 461-478.
  • 7Wang L X. A Course in Fuzzy Systems and Control[ M]. Prentice -Hall, NJ, 1997.
  • 8Jang J - S R, Sun C T, Mizutani E. Neuro - Fuzzy and Soft Computing[ M]. Prentice - Halt, NJ, 1997.
  • 9Lee C C. Fuzzy Logic in Control Systems: Fuzzy Logic Controller. Part I, II, IEEE Trans[ J ] .Syst, Man and Cybern, 1990, (20) :404 - 436.
  • 10Wang L X, Mendel J M. Back - Propagation Fuzzy System as Nonlinear Dynamic System Identifiers. Proc. IEEE Int. Conf [M].Fuzzy Systems, San Diego, 1992.1409- 1418.

共引文献21

同被引文献36

  • 1田新宇,高亮,尹辉.跨区间无缝线路管理信息系统辅助决策方法的研究[J].铁路计算机应用,2006,15(4):16-18. 被引量:1
  • 2Chen A, Leung M T, Hazem D.Application of neural networks to an emerging financial market: Forecasting and trading the Taiwan Stock Index[J].Computers and Operations Research, 2003,30: 901-923.
  • 3Zhu Xiaotian,Wang Hong,Li Xu, et al.Predicting stock index increments by neural networks: The role of trading volume under different horizons[J].Expert Systems with Applications, 2008, 34(4):3043-3054.
  • 4Zhang Yudong, Wu Lenan.Stock market prediction of S & P 500 via combination of improved BCO approach and BP neural network[J].Expert Systems with Applications, 2009,36(5) : 8849-8854.
  • 5Vanstone B, Finnie G.An empirical methodology for developing stockmarket trading systems using artificial neural networks[J]. Expert Systems with Applications, 2009,36(3) : 6668-6680.
  • 6Cao Qing, Parry M E.Neural network earnings per share forecasting models: A comparison of backward propagation and the genetic algorithrn[J].Decision Support Systems,2009,47:32-41.
  • 7Mozer M C,Smolensky RSkeletonization:A technique for trimming the fat from a network via relevance as-sessment[C]//Advances in Neural Information Processing Systems 1, 1989: 107-115.
  • 8戴稳胜,吕奇杰,David Pitt.金融时间序列预测模型——基于离散小波分解与支持向量回归的研究[J].统计与决策,2007,23(14):4-7. 被引量:8
  • 9搜瓤.上证指数历史数据.http://q.stocksohu.com/zs/00000I/'.hq.
  • 10铁道部运输局基础部,铁道部电子计算技术中心.铁路工务管理信息系统(PWMIS)技术报告[R].北京:铁道部运输局基础部,2002.

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部