期刊文献+

基于PSO的考虑完整费用的证券组合优化研究 被引量:6

Study on portfolio investment with full transaction cost based on particle swarm optimization
下载PDF
导出
摘要 通过分析中国证券市场证券交易不可拆分、不能卖空的特点以及现存的各种交易费用,建立一个考虑完整交易费用的证券投资组合优化模型,同时给出一个应用粒子群算法(PSO)求解的实例。结果证明该证券投资组合优化模型的完整性和有效性,也表明PSO算法可以快速准确地求解证券投资组合优化问题。 This paper first analyzed the characters of no dividing stocks,no short selling and all kinds of transaction cost in Chinese stock market,and established a portfolio optimization model which totally reflected the transaction cost. At last, solved an investment example by particle swarm optimization ( PSO) . The result not only shows that this optimization model is complete and effect,but also indicates that PSO algorithm can solve the portfolio optimization problem exactly and quickly.
出处 《计算机应用研究》 CSCD 北大核心 2010年第9期3364-3367,共4页 Application Research of Computers
关键词 交易费用 证券投资组合 粒子群算法 transaction cost portfolio investment particle swarm optimization ( PSO)
  • 相关文献

参考文献15

  • 1MARKOWITZ H.Portfolio selection[J].Journal of Finance,1952,7(1):77-91.
  • 2YOSHIMORTO A.The mean-variance approach to portfolio optimization subject to transaction costs[J].Journal of Operations Research Society of Japan,1996,39(1):99-117.
  • 3KELLERER H,MANSINI R,SPERANZA M G.On selecting a portfolio with fixed costs and minimum lots[J].Annals of Operations Research,2000,99(3):287-304.
  • 4MASINI R,SPERANZA M G.Heuristic algorithms for a portfolio selection problem with minimum transaction lots[J].European Journal of Operational Research,1999,114(2):219-250.
  • 5KONNO H,WIJAYANAYAKE A.Portfolio optimization problems under concave transaction costs and minimal transaction unit constrai-nts[J].Mathematical Programming,2001,89(3):233-250.
  • 6GOLDBERG D E.Genetic algorithms in search,optimization and machine learning[M].New York:Addison-Wesley,1989.
  • 7XIA Yu-seu,LIU Bao-ding,WANG Shou-yang,et al.A model of portfolio selection with order of expected returns[J].Computers and Operations Research,2000,27(4):409-422.
  • 8林丹,李小明,王萍.用遗传算法求解改进的投资组合模型[J].系统工程,2005,23(8):68-72. 被引量:13
  • 9刘晓峰,陈通,张连营.基于微粒群算法的最佳证券投资组合研究[J].系统管理学报,2008,17(2):221-224. 被引量:19
  • 10EBERHART R C,KENNEDY J.A new optimizer using particles swarm theory[C]//Proc of the 6th International Symposium on Micro Machine and Human Science,Nagoya.1995.

二级参考文献28

  • 1李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 2马永开,唐小我.非负约束条件下组合证券投资决策方法的进一步研究[J].预测,1996,15(4):53-56. 被引量:31
  • 3[4]Kennedy J,Eberhart R.Particle swarm optimization[C]//Proc IEEE Int Conf on Neural Networks[C].Perth,1995:1942-1948.
  • 4[5]Eberhart R,Shi Y.Comparing inertia weights and constriction factors in particle swarm optimization[C]//Proc IEEE Int Conf on Evolutionary Computation.La Jolla,2000:84-88.
  • 5[6]Eberhart R,Shi Yuhui.Particle swarm optimization:Developments,applications and resources[C]//Proc IEEE Int Conf on Evolutionary computation.Seoul,2001:81-86.
  • 6[7]Ioan Cristian Trelea.The particle swarm optimization algorithm:Convergence analysis and parameter selection[C]//Proc IEEE Int Conf on Evolutionary computation.[s.n.],2002:317-325.
  • 7[9]Shi Y H,Eberhart R.Fuzzy adaptive particle swarm optimization[C]//Proc IEEE Int Conf on Evolutionary Computation.Seoul,2001:101-106.
  • 8[10]Van den Bergh F,Engelbrecht.Training product unit networks using cooperative particle swarm optimizers[C]//Proc of the 3rd Genetic and Evolutionary Computation Conference (GECCO).San Francisco,USA,2001.
  • 9Markowitz H. Portfolio selection[J]. Journal of Finance, 1952,7 (1) : 77- 91.
  • 10Yoshimoto A. The mean-variance approach to portfolio optimization subject to transaction costs[J]. Journal of Operations Research Society of Japan, 1996, 39 ( 1 ) : 99- 117.

共引文献31

同被引文献54

引证文献6

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部