摘要
通过分析中国证券市场证券交易不可拆分、不能卖空的特点以及现存的各种交易费用,建立一个考虑完整交易费用的证券投资组合优化模型,同时给出一个应用粒子群算法(PSO)求解的实例。结果证明该证券投资组合优化模型的完整性和有效性,也表明PSO算法可以快速准确地求解证券投资组合优化问题。
This paper first analyzed the characters of no dividing stocks,no short selling and all kinds of transaction cost in Chinese stock market,and established a portfolio optimization model which totally reflected the transaction cost. At last, solved an investment example by particle swarm optimization ( PSO) . The result not only shows that this optimization model is complete and effect,but also indicates that PSO algorithm can solve the portfolio optimization problem exactly and quickly.
出处
《计算机应用研究》
CSCD
北大核心
2010年第9期3364-3367,共4页
Application Research of Computers
关键词
交易费用
证券投资组合
粒子群算法
transaction cost
portfolio investment
particle swarm optimization ( PSO)