期刊文献+

基于DCIWPSO在谷底边缘泡沫图像分割的应用 被引量:1

Based on DCIWPSO in application of valley-edge detection froth image segmentation
下载PDF
导出
摘要 矿物浮选过程中,为了预测矿物品位,需要提取大量泡沫图像特征参数,其中泡沫大小是十分重要的图像特征参数。图像分割就是把泡沫图像分割成若干气泡区域的处理技术。谷底边缘分割算法是泡沫分割中一种重要的算法,其中分割阈值是非常重要的量,标准粒子群算法对阈值计算容易陷入局部最优值,难以计算全局最优值,采用改进的粒子群算法,动态改变粒子群中的惯性权重值来得到适合边缘分割的阈值,达到了正确分割泡沫图像的目的。 In the process of mineral flotation,in order to predict the mineral grade,it needs to extract a large number of bubble image feature parameters,where bubble size is very important image characteristic parameter. Image segmentation is image processing technology that divides a bubble image into several bubble areas. The valley-edge detection segmentation algorithm is an important segmentation algorithm,which segmentation threshold is very important parameter. For standard particle swarm algorithm to calculate the threshold easily trapped into local optimal value,it is difficult to calculate the global optimum value, this paper improved particle swarm optimization,dynamic change value of the inertia weight in particle swarm optimization to achieve to be suitable for the edge split threshold,correctly achieve the purpose of froth image segmentation.
出处 《计算机应用研究》 CSCD 北大核心 2010年第9期3564-3566,共3页 Application Research of Computers
基金 国家自然科学基金重点项目(60634020) 国家自然科学基金资助项目(60874069)
关键词 泡沫图像 图像分割 谷底边缘检测 粒子群算法 动态改变惯性权重的粒子群 froth images image segmentation valley-edge detection particle swarm optimization DCIWPSO
  • 相关文献

参考文献10

  • 1MOOLMAN D W,EKSTEEN J J,ALDRICH C,et al.The significance of flotation froth appearance for machine vision control[J].International Journal of Mineral Processing,1996,48(3-4):135-158.
  • 2MOOLMAN D W,ALDRICH C,SCHMITZ G P J,et al.The interrelationship between surface froth characteristics and industrial flotation performance[J].Minerals Engineering,1996,9(8):837-854.
  • 3KAARTINEN J,HATONEN J.Machine vision based control of zinc flotation:a case study[J].Control Engineering Practice,2006,14(12):1455-1466.
  • 4BERGH F V D,ENGELBRECHT A P.A cooperative approach to particle swarm optimization[J].IEEE Trans on Evolutionary Computation,2004,8(3):225-239.
  • 5CHEN H Y,LEOU J J.Saliency-directed image interpolation using particle swarm optimization[J].Signal Processing,2010,90(5):1676-1692.
  • 6LIN Bao,RECKE B,KNUDSEN J K H.Bubble size estimation for flotation processes[J].Minerals Engineering,2008,21(7):539-548.
  • 7FAN S K S,LIN Y,WU C C.Image thresholding using a novel estimation method in generalized Gaussian distribution mixture modeling[J].Neuro Computing,2008,70(6):500-512.
  • 8WANG W X,WANG LY.Froth image segmentation algorithmms and their validation[J].Mineral Engineering,2003,25(16):1183-1192.
  • 9阳春华,杨尽英,牟学民,周开军,桂卫华.基于聚类预分割和高低精度距离重构的彩色浮选泡沫图像分割[J].电子与信息学报,2008,30(6):1286-1290. 被引量:26
  • 10MAIRTA M,CHATTERJEE A.A hybrid cooperat ive-comprehensive learning based PSO algorithm for image segmentation using multilevel thresholding[J].Expert Systems with Applications,2007,34(2):1341-1350.

二级参考文献10

  • 1岳振军,邱望成,刘春林.一种自适应的多目标图像分割方法[J].中国图象图形学报(A辑),2004,9(6):674-678. 被引量:27
  • 2冯征.一种基于粗糙集的K-Means聚类算法[J].计算机工程与应用,2006,42(20):141-142. 被引量:16
  • 3Moolman D W, Aldrich C, and Schmitz G P J. The interrelationship between surface froth characteristics and industrial flotation performance. Minerals Enginerring, 1996, 9(8): 837-854.
  • 4Kaartinen J and Hatonen J. Machine-vision-based control of zinc flotation--A case study. Control Engineering Practice, 2006, 14(12): 1455-1466.
  • 5Moolman D W, Aldrich C, and Van Deventer J S J. The interpretation of flotation froth surfaces by using digital image analysis and neural networks. Chemical Engineering Science, 1995, 50(22): 3501-3513.
  • 6Sadr-Kazemi N and Cilliers J J. An image processing algorithm for measurement of flotation froth bubble size and shape distribution. Minerals Engineering, 1997, 10(10): 1075-1083.
  • 7Wang W X, Bergholm F, and Yang B. Froth delineation based on image classification. Mineral Engineering, 2003, 16 (11): 1183-1192.
  • 8Salembier P and Flat J S. Zones filtering connected operators and filters by reconstruction. IEEE Trans. on Image Processing, 1995, 4(8): 1153-1160.
  • 9Vincent L. Morphological grayscale reconstruction in image analysis: Applications and efficient algorithms. IEEE Trans. on Image Processing, 1993, 2(2): 176-201.
  • 10Vincent L and Soille P. Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1991, 13(6): 583-598.

共引文献25

同被引文献35

引证文献1

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部