摘要
针对基于灰度—梯度共生矩阵模型的最大熵阈值分割算法抗噪声差的缺点,引入了均值—中值—梯度共生矩阵模型,并提出了基于该模型的最大熵阈值分割算法。为了有效地节省计算时间与存储空间,进而导出了该方法的快速递推公式。实验结果表明,该算法优于灰度—梯度模型分割方法,并能抑制高斯噪声、椒盐噪声以及其混合噪声对分割结果的影响,提高了分割的鲁棒性。
In order to overcome the shortcomings of maximum entropy thresholding algorithm based on gray level-gradient cooccurrence matrix model with poor antinoise performance,this paper introduced a mean-median-gradient co-occurrence matrix model. Based on this model,proposed a maximum entropy thresholding algorithm simultaneously. For the purpose of saving computing time and storage space,presented a fast recursive method in the end. Experimental results show that the algorithm is superior to gray level-gradient model segmentation approach,and can suppress Gaussian noise,impulse noise and their hybrid noise,improves the robustness of the segmentation effectively.
出处
《计算机应用研究》
CSCD
北大核心
2010年第9期3575-3578,3584,共5页
Application Research of Computers
基金
国家自然科学基金资助项目(60773098)
吉林省科技发展计划资助项目(20050305)
关键词
灰度—梯度共生矩阵
均值—中值—梯度共生矩阵
最大熵
阈值
图像分割
gray level-gradient co-occurrence matrix
mean-median-gradient co-occurrence matrix
maximum entropy
threshold
image segmentation