期刊文献+

基于157nm深紫外激光的蓝宝石基片微加工 被引量:4

Micromachining technology of sapphire substrate based on 157nm DUV laser
下载PDF
导出
摘要 为了探索157nm深紫外激光对蓝宝石材料的微加工技术,采用157nm激光微加工系统,对蓝宝石基片进行了扫描刻蚀和打孔加工,以研究激光工艺参量与刻蚀深度、表面形貌的关系,分析了157nm深紫外激光对蓝宝石材料的作用机理,并利用扫描刻蚀法在蓝宝石基片上加工了一个2维图形。由实验结果可知,157nm深紫外激光作用于蓝宝石材料是一个光化学作用与光热作用并存的加工过程,适合扫描刻蚀的加工参量为能量密度3.2J/cm^2,重复频率10Hz~20Hz,扫描速率0.15mm/min;在能量密度2.5J/cm^2下的刻蚀率为0.039μm/pulse。结果表明,通过对激光重复频率和扫描速度的控制可实现蓝宝石材料的精细微加工。 In order to probe micromachining technology of sapphire material, the ablation characteristics of 157nm deep ultraviolet laser were studied. The effect of laser process parameters on etching efficiency and surface quality was studied by scanning ablation and drilling on sapphire substrate. Moreover, the etching mechanism of 157nm laser on sapphire was analyzed. And then, a 2-D pattern was ablated onto the sapphire substrate by scanning approach. Both analysis and experimental results indicate that micromachining process that 157nm deep ultraviolet laser reacts on sapphire includes photochemical reactions and photothermolysis, and that a set of proper parameters about scanning etching were obtained, i. e. , scanning velocity at 0.15 mrn/ min with fluence of 3.2J/cm2, repetition frequency at 10Hz -20Hz; etching rate of drilling at 0. 039txm/pulse with fluenee of 2.5J/cm2. Precise micromachining could be realized under control of laser repetition rate and scanning velocity.
出处 《激光技术》 CAS CSCD 北大核心 2010年第5期636-639,共4页 Laser Technology
基金 国家自然科学基金资助项目(50775169 60537050)
关键词 激光技术 157nm深紫外激光 扫描刻蚀 打孔 微加工 蓝宝石基片 laser technique 157nm deep ultraviolet laser laser scanning ablation drilling mieromachining sapphire substrale
  • 相关文献

参考文献1

二级参考文献4

共引文献19

同被引文献31

  • 1章鹏,朱永,唐晓初,陈伟民.基于傅里叶变换的光纤法布里-珀罗传感器解调研究[J].光学学报,2005,25(2):186-189. 被引量:28
  • 2井文才,李强,任莉,唐锋,章锦,周革,张以谟.小波变换在白光干涉数据处理中的应用[J].光电子.激光,2005,16(2):195-198. 被引量:9
  • 3聂辉,陆炳哲.蓝宝石及其在军用光电设备上的应用[J].舰船电子工程,2005,25(2):131-133. 被引量:50
  • 4王高,徐兆勇,周汉昌.基于蓝宝石光纤传感器的瞬态高温测试及校准技术[J].光电子.激光,2005,16(4):441-443. 被引量:9
  • 5Strouse G F. Sapphire whispering gallery thermometer [J]. International Journal of Thermophysics, 2007, 28 (6) : 1812-1821.
  • 6Stephen J. Mihailov, Dan Grobnic, Christopher W. Smels- er. High-temperature multiparameter sensor based on sapphire fiber Bragg gratings[J]. Optics Letters, 2010,35 (16) : 2810-2812.
  • 7WANG Jia-jun, DONG Bo, Evan Lally, et al. Multiplexed high temperature sensign with sapphire fiber air gap- based extrinsic Fabry-Perot interferometers[J]. Optics Letters,2010,2,5 (5) :619-621.
  • 8ZHU Jing-jing, Zhang A P, XIA Tian-hao, et al. Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer [ J]. Sensors Journal, 2010,10 (9) : 1415- 1418.
  • 9ZHU Yi-zheng, HUANG Zheng-yu, SHEN Fa-bin, et al. Sapphire-fiber-based white-light interferometric sensor for high-temperature measurements[J]. Optics Letters, 2005,30(7) : 711-713.
  • 10Shah M M Real-time signal processing and hardware de- velopment for a wavelength modulated optical fiber sen-sor system[D]. Blackburg, Viginia Tech, 1997.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部