期刊文献+

融合像素空间信息及加权模糊聚类的肺结节识别 被引量:2

Lung Nodule Recognition by Integrating Feature Weighted Fuzzy Clustering with Pixel Spatial Information
下载PDF
导出
摘要 针对肺部计算机辅助诊断中孤立肺结节识别容易受噪声、气管、血管的干扰问题,提出一种融合空间信息及加权模糊聚类的肺结节识别算法.该方法利用融合像素空间信息及带特征权重的模糊C均值聚类算法实现感兴趣区域分割;利用特征选择算法计算感兴趣区域各特征权重,加权模糊C均值聚类算法分类感兴趣区域,识别肺结节.对比实验证明,该算法对感兴趣区域分割抗噪声性增强;感兴趣区域分类准确率提高;整体算法对肿瘤的检出率较高,漏诊率降低,为医生诊断早期肺癌病灶提供更加准确的客观依据. In the computer-aided detection(CAD) for lung,the recognition of solitary pulmonary nodules may be interrupted by noise,trachea,bronchial or veins.A method is therefore proposed to recognize lung nodule by integrating the feature weighted fuzzy C-means clustering with pixel spatial information so as to segment the region of interest(ROI).Every feature weight in ROI is calculated by the feature selection algorithm,and the weighted fuzzy C-means clustering algorithm is used to classify ROI,thus recognizing the lung nodules.Experimental results showed that the ROI segmentation algorithm is capable of denoising robustly and that the accuracy of ROI classification is improved.The integrated algorithm proposed has a high sensitivity to tumors with low undetected rate.It can provide helpful information to quickly identify suspicious focus in early stage of lung cancer.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第9期1250-1253,共4页 Journal of Northeastern University(Natural Science)
基金 辽宁省自然科学基金资助项目(20072038)
关键词 孤立型肺结节 空间信息 加权模糊C均值聚类 特征选择 solitary pulmonary nodule spatial information feature weighted fuzzy C-means clustering feature selection
  • 相关文献

参考文献9

  • 1Okumuar T, Miwa T, Kako J, et al. Automatic detection of lung cancers in chest CT images by variable N-quoit filter[C] // Fourteenth International Conference on Pattern Recognition. Brisbane, 1998 : 1671 - 1673.
  • 2Wiemker R, Zwarkruis A. Optimal thresholding for 3D segmentation of pulmonary nodules in high resolution CT[C]. // Proceedings of the 17th International Congress and Exhibition of Computer Assisted Radiology and Surgery. Berlin, 2001:653 - 658.
  • 3Lee Y, Hara T, Fujita H, et al. Automated detection of pulmonary nodules in helical CT images based on an improved template-matching technique [J]. IEEE Trans on Med Imaging, 2001,20(7) :595 - 604.
  • 4Zhao B, Gamsu G, Ginsberg M S, et al. Automatic detection of small lung nodules on CT utilizing a local density maximum algorithm[J ]. Journal of Applied Clinical Medical Physics, 2003,4(3) :248 - 260.
  • 5Shingo T, Han X H, Chen Y W, et al. Enhancement and detection of lung nodules with multiscale filters in CT images [ C ] // International Conference on Intelligent Information Hiding and Multimedia Signal Processing 2008. Harbin, 2008 : 717 - 720.
  • 6Yamamoto S. Image processing algorithm of computer-aided diagnosis in lung cancer screening by CT [ J ]. System and Computers in Japan, 2005,36(7) :40 - 53.
  • 7Chuang K S, Tzeng H L, Chen S, et al. Fuzzy C-means clustering with spatial information for image segmentation[J ]. Comput Med Imaging Graph, 2006,30 ( 1 ) : 9 - 15.
  • 8Pu J T, Zheng B, Leader K, et al. An automated CT based lung nodule detection scheme using geometric analysis of signed distance field[J]. Med Phys, 2008,35(8) :3453 - 3461.
  • 9郭薇,魏颖,周翰逊,薛定宇.基于混合分类的肺结节检测算法[J].东北大学学报(自然科学版),2008,29(11):1528-1531. 被引量:3

二级参考文献9

  • 1Okumura T, Miwa T, Junichi K, et al. Automatic detecion of lung cancers in chest CT images by variable N-quoit filter [J]. Fourteenth International Conference on Pattern Recognition, 1998,2(8) : 1671 - 1673.
  • 2McCulloch C C. Model-based detection of lung nodules in computed tomography exams [ J ]. Academic Radiology, 2004,11 (3) : 258 - 266.
  • 3Lee Y, Hara T, Fujita H, et al. Automated detection of pulmonary nodules in Helical CT images based on an improved template-matching technique [ J ]. IEEE Transations on Medical Imaging, 2001,20(7) :595 - 604.
  • 4Hu S Y, Hoffman E A, Reinhardt J M, et al. Automatic lung segmentation for accurate quantization of volumetric X-ray CT images[J ]. IEEE Transaction on Medical Imaging, 2001,20 (6):490 498.
  • 5Aristofanes C S, Panlo C, Marcelo G. Segmentation and reconstruction of the pulmonary parenchyrna [J]. IEEE Transaction on Medical Imaging, 2005,15(6) : 127 - 135.
  • 6Wang K , Salvatore J intrusion detection[J]. Anomalous payload-based network RAID, 2004,3224:203 - 222.
  • 7罗述谦 周果宏.医学图像处理与分析[M].北京:科学出版社,2003..
  • 8魏颖,徐心和,贾同,赵大哲.基于多尺度形态学滤波的CT图像疑似肺结节提取[J].东北大学学报(自然科学版),2008,29(3):312-315. 被引量:6
  • 9陈旭,庄天戈.胸部高分辨率CT片中肺实质的自动分割[J].上海交通大学学报,2002,36(7):946-948. 被引量:16

共引文献2

同被引文献20

  • 1Nishikawa R. Current status and future directions of comput- er-aided diagnosis in mammography [J]. Computerized Medical Imaging and Graphics, 2007:10(1):224-235.
  • 2Shingo T, Hart X H, Chen Y,W et al. Enhancement and de- tection of lung nodules with multiscale filters in CT images [C]. International conference on Intelligent Information Hid- ing and Multimedia Signal Processing 2008,10:717-720.
  • 3Karthikeyan C., Ramadoss B., Baskar S. Segmentation Al- gorithm for CT Images using Morphological Operation and Artificial Neural Network[J]. Image Processing and Pattern Recognition, 2012. 5(2): 115-122.
  • 4Gomez W, Leija L, Alvarenga A V, et al. Computerized le- sion segmentation of breast ultrasound based on marker-con- trolled watershed transformation [J]. Medical Physics, 2010, 37 (1): 82-95.
  • 5Wang Kai, Lv Qingwen, Peng Jie, et al. A novel structure analysis filter based on the adaptive window for pulmonary nodules detection [C]//2013 IEEE International Conference on Computer Science and Automation Engineering. Guangzhou, China, 2013: 1087-1091.
  • 6Lee M C, Boroczky L, Sungur-Stasik K, et al. Computer-aided diagnosis of pulmonary nodules using a two-step approach for feature selection and classifier ensemble construction [J]. Artificial Intelligence in Medicine, 2010, 50(1): 43-53.
  • 7Tan M, Deklerck R, Jansen B, et al. A novel computer-aided lung nodule detection system for CT images [J]. Medical Physics, 2011, 38(10): 5630-5645.
  • 8Han Fangfang, Zhang Guopeng, Wang Huafeng. A texture feature analysis for diagnosis of pulmonary nodules using LIDC-IDRI database [C]//2013 IEEE International Conference on Medical Imaging Physics and Engineering (ICMIPE). Shengyang, China, 2013: 14-18.
  • 9Macario V, de Carvalho F de A T. An adaptive isodata fuzzy clustering algorithm with partial supervision [C]// 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Seoul, Korea, 2012: 1978-1983.
  • 10Pedrycz W, Wember J, Waletzky J. Fuzzy clustering with partial supervision [J]. IEEE Transaction on System, Man, and Cybernetics, PartB: Cybernetics, 1997, 27(5): 787-795.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部