期刊文献+

On Generalized E-Monotonicity in Banach Spaces

On Generalized E-Monotonicity in Banach Spaces
下载PDF
导出
摘要 Several new kinds of generalized E-preinvexity and generalized invariant E-monotonicity are introduced in the setting of Banach spaces. The relations between E-preinvexity, E-prequasiinvexity, (pseudo, quasi) E-invexity and invariant (pseudo, quasi) E-monotonicity are studied, which can be viewed as an extension of some known results. Several new kinds of generalized E-preinvexity and generalized invariant E-monotonicity are introduced in the setting of Banach spaces. The relations between E-preinvexity, E-prequasiinvexity, (pseudo, quasi) E-invexity and invariant (pseudo, quasi) E-monotonicity are studied, which can be viewed as an extension of some known results.
出处 《Journal of Mathematical Research and Exposition》 CSCD 2010年第5期903-908,共6页 数学研究与评论(英文版)
基金 Supported by the National Natural Science Foundation of China (Grant No10871226)
关键词 Eopreinvexity E-invexity invariant E-monotonicity relations. Eopreinvexity E-invexity invariant E-monotonicity relations.
  • 相关文献

参考文献9

  • 1YOUNESS E A. E-convex sets, E-convex functions, and E-convex programming [J]. J. Optim: Theory Appl., 1999, 102(2): 439-450.
  • 2YOUNESS E A. Optimality criteria in E-convex programming [J]. Chaos Solitons Fractals, 2001, 12(9): 1737-1745.
  • 3YOUNESS E A. Characterization of efficient solutions of multi-objective E-convex programming problems [J]. Appl. Math. Comput., 2004, 151(3): 755-761.
  • 4YANG Xinmin. On E-convex sets, E-convex functions and E-convex programming [J]. J. Optim. Theory Appl., 2001, 109(3): 699-704.
  • 5SYAU Y R, LEE E S. Some properties of E-convex functions [J]. Appl. Math. Lett., 2005, 18(9): 1074-1080.
  • 6FULGA C, PREDA V. Nonlinear programming with E-preinvex and local E-preinvex functions [J]. European J. Oper. Res., 2009, 192(3): 737-743.
  • 7KARAMARDIAN S, SCHAIBLE S. Seven kinds of monotone maps [J]. J. Optim. Theory Appl., 1990, 66(1): 37-46.
  • 8YANG Xinmin, YANG Xiaoqi, Teo K L. Generalized invexity and generalized invariant monotoniclty [J]. J. Optim Theory Appl., 2003, 117(3): 605-625.
  • 9MOHAN S R, NEOGY S K. On invex sets and preinvex functions [J]. J. Math. Anal. Appl., 1995, 189(3): 901-908.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部