期刊文献+

Dynamics of Two Extensive Classes of Recursive Sequences

Dynamics of Two Extensive Classes of Recursive Sequences
下载PDF
导出
摘要 We investigate the dynamics of two extensive classes of recursive sequences:Xn+1 =c∑j=0^k(i0,i1…,i2j)∈A2j ∑xn-i0xn-i1… xn-i2j+.f(xn-i0, xn-i1,..., xn-i2k)/c∑j=1^k(i0,i1,…,i2j-1)∈A2j-1∑ xn-i0xn-i1… xn-i2j-1 + c + f(xn-i0, xn-i1,…, xn-i2k)and Xn+1c∑j=1^k(i0,i1,…,i2j-1)∈A2j-1∑ xn-i0xn-i1… xn-i2j-1 + c + f(xn-i0, xn-i1,…, xn-i2k)/c∑j=0^k(i0,i1…,i2j)∈A2j ∑xn-i0xn-i1… xn-i2j+.f(xn-i0, xn-i1,..., xn-i2k)We prove that their unique positive equilibrium 5 = 1 is globally asymptotically stable. And a new access is presented to study the theory of recursive sequences. We investigate the dynamics of two extensive classes of recursive sequences:Xn+1 =c∑j=0^k(i0,i1…,i2j)∈A2j ∑xn-i0xn-i1… xn-i2j+.f(xn-i0, xn-i1,..., xn-i2k)/c∑j=1^k(i0,i1,…,i2j-1)∈A2j-1∑ xn-i0xn-i1… xn-i2j-1 + c + f(xn-i0, xn-i1,…, xn-i2k)and Xn+1c∑j=1^k(i0,i1,…,i2j-1)∈A2j-1∑ xn-i0xn-i1… xn-i2j-1 + c + f(xn-i0, xn-i1,…, xn-i2k)/c∑j=0^k(i0,i1…,i2j)∈A2j ∑xn-i0xn-i1… xn-i2j+.f(xn-i0, xn-i1,..., xn-i2k)We prove that their unique positive equilibrium 5 = 1 is globally asymptotically stable. And a new access is presented to study the theory of recursive sequences.
出处 《Journal of Mathematical Research and Exposition》 CSCD 2010年第5期929-935,共7页 数学研究与评论(英文版)
基金 Supported by the National Natural Science Foundation of China (Grant No10771169)
关键词 recursive sequence EQUILIBRIUM dynamics. recursive sequence equilibrium dynamics.
  • 相关文献

参考文献9

  • 1HAMZA A E, KHALAF-ALLAH R. On the recursive sequence xn+1=[J]. Comput. Math.Appl., 2008, 56(7): 1726-1731.
  • 2NESEMANN T. Positive nonlinear difference equations: some results and applications [J]. Nonlinear Anal., 2001, 47(7): 4707-4717.
  • 3PAPASCHINOPOULOS G, SCHINAS C J. Global asymptotic stability and oscillation of a family of difference equations [J]. J. Math. Anal. Appl., 2004, 294(2): 614-620.
  • 4LI Xianyi. Global behavior for a fourth-order rational difference equation [J]. J. Math. Anal. Appl., 2005, 312(2): 555-563.
  • 5LI Xianyi. Qualitative properties for a fourth-order rational difference equation [J]. J. Math. Anal. Appl., 2005, 311(1): 103-111.
  • 6AMLEH A M, KRUSE N, LADAS G. On a class of difference equations with strong negative feedback [J]. J. Differ. Equations Appl., 1999, 5(6): 497-515.
  • 7THOMPSON A C. On certain contraction mappings in a partially ordered vector space [J]. Proc. Amer. Math. Soc., 1963, 14: 438-443.
  • 8KRAUSE U, NUSSBAUM R D. A liner set trichotomy for self-mappings of normal cones in Banach spaces [J]. Nonlinear Anal., 1993, 20(7): 855-870.
  • 9KRUSE N, NESEMANN T. Global asymptotic stability in some discrete dynamical systems [J]. J. Math. Anal. Appl., 1999, 235(1): 151-158.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部