期刊文献+

RELATION BETWEEN WIENER NUMBERS OF QUASI-HEXAGONAL CHAINS AND QUASI-POLYOMINO CHAINS

RELATION BETWEEN WIENER NUMBERS OF QUASI-HEXAGONAL CHAINS AND QUASI-POLYOMINO CHAINS
原文传递
导出
摘要 Let Q_n and B_n denote a quasi-polyomino chain with n squares and a quasi-hexagonalchain with n hexagons,respectively.In this paper,the authors establish a relation between the Wienernumbers of Q_n and B_n:W(Q_n)=1/4[W(B_n)-8/3n^3+(14)/3n+3].And the extremal quasi-polyominochains with respect to the Wiener number are determined.Furthermore,several classes of polyominochains with large Wiener numbers are ordered.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2010年第4期873-882,共10页 系统科学与复杂性学报(英文版)
基金 supported by the Natural Science Foundation of China under Grant No. 10371102
关键词 Hexagonal chain polyomino chain quasi-hexagonal chains quasi-polyomino chain Wiener number. 六角链 维纳 六边形 维也纳 冰片
  • 相关文献

参考文献15

  • 1I. Gutman and S. Klavaar, Relations between Wiener numbers of benzenoid hydrocarbons and phenylenes, ACH-Models in Chemistry, 1998, 135(1/2): 45-55.
  • 2S. Klavaar, I. Gutman, and B. Mohar, Labeling of benzenoid systems which reflects the vertex- distance relations, J. Chem. Inf. Comput. Sci., 1995, 35: 590-593.
  • 3Ljiljana Pavlovic and Ivan Gutman, Wiener numbers of Phenylenes: An exact result, J. Chem. Inf. Comput. Sci., 1997, 37: 355-358.
  • 4L. Z. Zhang and F. J. Zhang, Extremal hexagonal chains concerning k-matchings and k-independent sets, Journal of Mathematical Chemistry, 2000, 2T(4): 319-329.
  • 5Y. Q. Zeng and F. J. Zhang, Extremal polyomino chains on k-matchings and k-independent sets, J. Math. Chem., 2006.
  • 6I. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry, Speinger, Berlin, 1986.
  • 7F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood, 1990.
  • 8I. Gutman, Calculating the Wiener numbers of benzenoid hydrocarbons: Two theorems, Chem. Phys. Lett., 1987, 136: 134-136.
  • 9I. Gutman and O. E. Polansky, Wiener numbers of polyacenes and related benzenoid molecules, Commun. Math. Chem., 1986, 20: 115-123.
  • 10A. A. Dobrynin, A simple formula for the calculation of the Wiener index of hexagonal chains, Comput. Chem., 1999, 23(1): 43-48.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部