RELATION BETWEEN WIENER NUMBERS OF QUASI-HEXAGONAL CHAINS AND QUASI-POLYOMINO CHAINS
RELATION BETWEEN WIENER NUMBERS OF QUASI-HEXAGONAL CHAINS AND QUASI-POLYOMINO CHAINS
摘要
Let Q_n and B_n denote a quasi-polyomino chain with n squares and a quasi-hexagonalchain with n hexagons,respectively.In this paper,the authors establish a relation between the Wienernumbers of Q_n and B_n:W(Q_n)=1/4[W(B_n)-8/3n^3+(14)/3n+3].And the extremal quasi-polyominochains with respect to the Wiener number are determined.Furthermore,several classes of polyominochains with large Wiener numbers are ordered.
基金
supported by the Natural Science Foundation of China under Grant No. 10371102
参考文献15
-
1I. Gutman and S. Klavaar, Relations between Wiener numbers of benzenoid hydrocarbons and phenylenes, ACH-Models in Chemistry, 1998, 135(1/2): 45-55.
-
2S. Klavaar, I. Gutman, and B. Mohar, Labeling of benzenoid systems which reflects the vertex- distance relations, J. Chem. Inf. Comput. Sci., 1995, 35: 590-593.
-
3Ljiljana Pavlovic and Ivan Gutman, Wiener numbers of Phenylenes: An exact result, J. Chem. Inf. Comput. Sci., 1997, 37: 355-358.
-
4L. Z. Zhang and F. J. Zhang, Extremal hexagonal chains concerning k-matchings and k-independent sets, Journal of Mathematical Chemistry, 2000, 2T(4): 319-329.
-
5Y. Q. Zeng and F. J. Zhang, Extremal polyomino chains on k-matchings and k-independent sets, J. Math. Chem., 2006.
-
6I. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry, Speinger, Berlin, 1986.
-
7F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood, 1990.
-
8I. Gutman, Calculating the Wiener numbers of benzenoid hydrocarbons: Two theorems, Chem. Phys. Lett., 1987, 136: 134-136.
-
9I. Gutman and O. E. Polansky, Wiener numbers of polyacenes and related benzenoid molecules, Commun. Math. Chem., 1986, 20: 115-123.
-
10A. A. Dobrynin, A simple formula for the calculation of the Wiener index of hexagonal chains, Comput. Chem., 1999, 23(1): 43-48.
-
1李武,罗忠生,王明伟.冰片的拉曼光谱(英文)[J].科学技术与工程,2015,35(2):172-174.
-
2梅晓凤,畅大为,李丽梅.严格积γ-对角占优矩阵的三角-schur补[J].纺织高校基础科学学报,2014,27(4):482-486. 被引量:1
-
3李丽梅,畅大为,梅晓凤.严格γ-对角占优矩阵的三角-schur补[J].纺织高校基础科学学报,2014,27(4):477-481. 被引量:1
-
4Wu Huoxiong Beijing Normal University, China Department of Mathematics Chenzhou Normal College, Hunan, 423000 P R China.AVERAGE σ-WIDTHS OF THE UNIT BALL OF I_1~∞(R)IN I_2~∞(R)[J].Analysis in Theory and Applications,1994,10(2):92-104.
-
5苏布道.共振光散射及荧光光谱法研究冰片对DNA的抑病机制[J].光谱实验室,2007,24(6):995-1001. 被引量:1
-
6Danting WANG,Yanying WANG,Yanhong DING.Orientable Small Covers over a Product Space[J].Chinese Annals of Mathematics,Series B,2016,37(3):331-356.
-
7Yan Qing WANG Fu Qing GAO.Laws of the Iterated Logarithm for High-Dimensional Wiener Sausage[J].Acta Mathematica Sinica,English Series,2011,27(8):1599-1610.
-
8Jing-zhong ZHANG,Yong FENG.Obtaining exact value by approximate computations[J].Science China Mathematics,2007,50(9):1361-1368. 被引量:7
-
9程远芳,杨婷婷.几种市售香肠中亚硝酸盐含量的测定[J].科技信息,2011(19):181-181. 被引量:3
-
10耿哲,黄彬,鲁晓明,陈庆华.5-冰片氧基-3,4-二取代-2(5H)-呋喃酮NMR研究[J].波谱学杂志,1998,15(3):253-259. 被引量:1