摘要
研究具有两个异号非线性源项波动方程的初边值问题utt+Δ2u+αut+a|u|p-1u-b|u|q-1u=0(α>0,a>0,b>0).该方程用以描述具有两个性质相异的源作用下的物理系统.利用Galerkin方法证明了若1≤n≤4时,1<q<p<∞;n≥5时,1<q<p<nn-+44,u0(x)∈H02(Ω),u1(x)∈L2(Ω),则问题存在一个整体弱解u(x,t)∈L∞(0,T;H20(Ω)).
The initial boundary value problem for wave equations with two nonlinear source terms of different signs utt+Δ2u+αut+a|u|p-1u-b|u|q-1u=0(α0,a0,b0) is studied in this paper.This equation describes physical systems are affected by two sources with different properties.It is proved that if 1≤n≤4,1qp∞;n≥5,qqpn+4n-4,u0(x)∈H20(Ω),u1(x)∈L2(Ω),then the problem admits exist the global weak solution u(x,t)∈L∞(0,T;H20(Ω)) by using Galerkin method.
出处
《哈尔滨师范大学自然科学学报》
CAS
2010年第2期32-34,共3页
Natural Science Journal of Harbin Normal University
关键词
波动方程
整体弱解
初边值问题
Wave equation
Global weak solution
Initial boundary value problem