期刊文献+

一类具有非线性异号源项波动方程的初边值问题 被引量:2

Initial Boundary Value Problem for Wave Equations with Nonlinear Source Terms of Different Signs
下载PDF
导出
摘要 研究具有两个异号非线性源项波动方程的初边值问题utt+Δ2u+αut+a|u|p-1u-b|u|q-1u=0(α>0,a>0,b>0).该方程用以描述具有两个性质相异的源作用下的物理系统.利用Galerkin方法证明了若1≤n≤4时,1<q<p<∞;n≥5时,1<q<p<nn-+44,u0(x)∈H02(Ω),u1(x)∈L2(Ω),则问题存在一个整体弱解u(x,t)∈L∞(0,T;H20(Ω)). The initial boundary value problem for wave equations with two nonlinear source terms of different signs utt+Δ2u+αut+a|u|p-1u-b|u|q-1u=0(α0,a0,b0) is studied in this paper.This equation describes physical systems are affected by two sources with different properties.It is proved that if 1≤n≤4,1qp∞;n≥5,qqpn+4n-4,u0(x)∈H20(Ω),u1(x)∈L2(Ω),then the problem admits exist the global weak solution u(x,t)∈L∞(0,T;H20(Ω)) by using Galerkin method.
机构地区 哈尔滨师范大学
出处 《哈尔滨师范大学自然科学学报》 CAS 2010年第2期32-34,共3页 Natural Science Journal of Harbin Normal University
关键词 波动方程 整体弱解 初边值问题 Wave equation Global weak solution Initial boundary value problem
  • 相关文献

参考文献8

二级参考文献27

  • 1Steven Paul Levandosky. Decay Estimates for Fourth Order Wave Equations [J]. Journal of Differential Equations, 1998, 143: 360-413.
  • 2Steven Levandosky. Stability and Instability of Fourth-Order Solitary Waves [J]. Journal of Dynamics and Differential Equations, 1998,10(1): 151 - 188.
  • 3Sattinger D H. On Global Solution of Nonlinear Hyperbolic Equations [J]. Arch Rat Mech Anal, 1968, 30:148 - 172.
  • 4Payne L E, Sattinger D H. Saddle Points and Instability of Nonlinear Hyperbolic Equations [J]. IsRael Journal of Mathematics, 1975,(22): 273 - 303.
  • 5Woinowsky KS. The effect of axial force on the vibration ofhinged bars[J]. J. Appl. Mech., 1960, 17: 35-36.
  • 6An L J, Peirce A. A weakly nonlinear analysis of elaseto-plastic microstructure models [ J ]. SIAM J. App. Math., 1995,55:136-155.
  • 7Steven P L. Decay estimates for fourth order wave equations[ J]. Journal of Differential Equations, 1998, 143: 360-413.
  • 8Steven P L. Stability and instability of fourth-order solitary waves [ J ]. Jottmal of Dynamics and Differential Equations, 1998,10(1): 151-188.
  • 9Sattinger D H. On global solution of nonlinear hyperbolic equations[J]. Arch. Rat. Mech. Anal. ,1968, 30: 148-172.
  • 10Payne L E, Sattinger D H. Saddle points and instability of nonlinear hyperbolic equations [ J ]. Israel Journal of Mathematics,1975, (22): 273-303.

共引文献15

同被引文献8

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部