期刊文献+

空间滞后模型中Moran's I统计量的Bootstrap检验 被引量:6

Bootstrap Moran's I test statistic in spatial autoregressive models
原文传递
导出
摘要 针对空间滞后模型的估计残差,采用Wild.Bootstrap方法进行空间相关性检验;进而,基于Moran's I统计量的经验分布,从水平扭曲和功效角度比较Bootstrap检验和渐近检验的有效性.Monte Carlo实验结果显示,在经典正态假设条件下,Bootstrap检验已然同等或优于渐近检验;在更为实际的异方差、非正态假设条件下,渐近检验显著偏离,而Bootstrap检验的水平扭曲更小、功效更高.当模型不满足经典的分布假设条件,尤其是在小样本和空间衔接密度较高情况下,与渐近检验相比,Bootstrap检验更为有效. In this paper, residual-based wild Bootstrap methods are applied for hypothesis testing of spatial correlation in a spatial autoregressive linear regression model. Based on the empirical distribution of Moran's I test statistic, the actual size and power of Bootstrap and asymptotic tests for spatial correlation are evaluated and compared. Under classical normality assumption of the model, the performance of the Bootstrap tests is equivalent to or better than that of the asymptotic tests in terms of size and power. For more realistic heterogeneous non-normal distributional models, size distortion of the asymptotic tests is far away from the theoretical zero value. Whereas, Bootstrap tests have shown superiority in smaller size distortion and higher power when compared to asymptotic counterparts. Monte Carlo experiments indicate that based on Moran's I test statistic, Bootstrap method is an effective alternative to the theoretical asymptotic approach, especially for cases with a small sample and dense spatial contiguity when the classical distributional assumption is not warranted in a spatial autoregressive model.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2010年第9期1537-1544,共8页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(70871041)
关键词 Moran’s I统计量 Wild BOOTSTRAP 水平扭曲 功效 Monte Carlo实验 Moran's I statistic Wild Bootstrap size distortion power Monte Carlo experiment
  • 相关文献

参考文献1

二级参考文献19

  • 1Anselin, L. , 1988, Spatial Econometrics : Methods and Models [M], Kluwer, Dordrecht.
  • 2Anselin, L. and A. K. Bera, R. J. G. M. Florax, and M. Yoon, 1996, Simple Diagnostic Tests for Spatial Dependence [J], Regional Sceience and Urban Economics, 26, 77-104.
  • 3Anselin, L. and R. Florax, 1995, Small Sample Properties of Tests for Spatial Dependence in Regression Models : Some Further Results [C], New Directions in Spatial Econometrics. Spinger Verlag, New York, 21-74.
  • 4Chang, Y. , 2004, Bootstrap Unit Root Tests in Panels with Cross-sectional Dependency [J]. Journal of Econometrics, 120, 263-293.
  • 5Cliff, A. and J. Ord, 1973, Spatial Autocorrelation [M], Pion, London,
  • 6Cliff, A. and J. Ord, 1981, Spatial Processes, Models and Applications[M], Pion, London,
  • 7Davidson, R. and J. G. MaeKinnon, 1999, The Size Distortion of Bootstrap Tests [J], Econometric Theory, 15, 361-376.
  • 8Davidson, R. and J.G. MacKinnon, 2002, Bootstrap Tests : How Many Bootstraps[J].Econometric Reviews, 19, 55-68.
  • 9Davison, A.C. , D.V. Hinkley, and G. A. Young, 2003, Recent Developments in Bootstrap Methodology [J], Statistical Science, 18, 141-157.
  • 10Davidson, R. and J.G. MacKinnon, 2006, The Power of Bootstrap and Asymptotic Tests [J], Journal of Econometrics, 133, 421-441.

共引文献14

同被引文献94

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部