摘要
为了筛选优良大麦种质资源用于贫瘠化土壤开发及干旱与半干旱地区农业改良与建设,采用主成分分析(Principal Components Analysis,PCA)和模糊聚类(Fuzzy Clustering,FC)分析方法对107份引进不同地区大麦品种(系)进行了农艺性状考察与评价,并对各性状进行了相关分析,比较它们的生长特点及在陕西地区的生长表现,对其适应性进行评价比较。主成分分析结果表明:5个综合主成分可代表大麦12个表型变量91.0268的原始数据信息量。利用模糊隶属函数度量D值进行WPGMA聚类,可将107份材料划分为4类,聚类结果可以较好地反映这些引进种质资源的选育和分布区域特点,其中野生群体综合表现较好,在品种的选育上有很高的利用价值;通过主成分分析,将相关性强的多个性状重新转化成几个新的独立并且有较强代表性的综合变量(性状),结合模糊聚类的方法进行大麦表型的综合评价,可以较好地揭示大麦品种(系)内和品种(系)间以及和群体间的关系。
In order to select fine barley germplasm resources for the development of poor soils and improvement of agriculture in arid and semiarid areas,principal component analysis(PCA) and fuzzy clustering analysis(FC) are used to study and evaluate the agronomic traits of 107 barley varieties(lines) introduced from abroad.Correlation analysis is also carried out among various traits to compare their growth characteristics and adaptability in Shaanxi Province,in a view to make rational utilization of these germplasm resources.The results show that the five integrated principal components can represent 91.0268 of original data information of 12 phenotypic variables of barley.The 107 materials of barley germplasm can be divided into 3 categories by using fuzzy membership function values WPGMA clustering metric D,and the clustering results can reflect soundly regional characteristics of breeding and distribution of these germplasm resources,of which the wild groups perform better and have a high value in use of cultivar selection.Through PCA,the multiple traits with strong correlation are re-converted into several new independent ones which have a strong representation of the integrated variables(traits).To make comprehensive evaluation of the phenotype of barley in combination with fuzzy clustering method can better reveal relationships among barley varieties(lines) and groups.
出处
《干旱地区农业研究》
CSCD
北大核心
2010年第5期5-14,共10页
Agricultural Research in the Arid Areas
基金
教育部科技创新工程重大项目培育资金项目资助(707054)
高等学校学科创新引智计划资助(111-2-16)
国家"十一五""863"计划-现代节水农业技术系统创新及集成应用(2006AA100223)
陕北地区燕麦种植与利用示范(XTG-2009-29)
关键词
大麦种质
农艺性状
主成分分析
模糊聚类
综合分析
barley germplasm
agronomic characters
principal component analysis
fuzzy clustering
comprehensive analysis