期刊文献+

神经内分泌计算模型及其在机器人避障中的应用 被引量:2

Neuro-endocrine Computation Model and its Application in Obstacle Avoidance
下载PDF
导出
摘要 受生物体神经内分泌系统调节机制的启发,提出一种神经内分泌计算模型.该模型中,内分泌系统能够对神经系统的学习与记忆行为进行反馈调控,使自主体及时调整行为,从而提高其学习和适应未知环境的能力.为了验证模型及算法的有效性,将其应用于机器人导航避障仿真实验,并与离散Q学习方法对比,结果表明该模型是有效的. Inspired by the regulation mechanism of biological neuro-endocrine system,a neuron-endocrine computation model is proposed.In the model,the endocrine system regulates the learning and memorization behaviors of the neural system by feedback control,which could adjust the agent's behavior in time and improve its ability to learn and adapt to the unknown environment.To verify the validity of the model,we performed a simulation experiment,in which the proposed model and Q-learning with discrete states were utilized respectively to help a robot learn the ability of obstacle avoidance.Experimental results show that the proposed model is more effective than the Q-learning with discrete states.
出处 《小型微型计算机系统》 CSCD 北大核心 2010年第9期1910-1913,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60875027)资助
关键词 内分泌系统 神经网络 神经内分泌系统 避障 endocrine system neural network neuro-endocrine system obstacle avoidance
  • 相关文献

参考文献9

  • 1Shen W M, l..u Y, Will P. Hormone-based control for self-reconfigurable robots[ C]. Proceedings of the Fourth International Conference on Autonomous Agents, 2000, 918-925.
  • 2Shen W Mn, Salemi B, Will P. Hormone-inspired adaptive communication and distributed control for CONRO self-reconfigurable robots[ J]. IEEE Transactions on Robotics and Automation, 2002, 18(5) :700-712.
  • 3Avila-Garcia, Canamero L. Using hormonal feedback to modulate action selection in a competitive scenario [ A]. In: From Animals to Animats 8[C], Proceedings of the Eight Internation. Conf. on Simulation of Adaptive Behavior, 2004, (SAB04) ,243-252.
  • 4Avila-Garcia,Canamero L, Hormonal modulation of perception in motivation based action selection architectures[ C]. Proceedings of the Symposium on Agents that Want and Like: Motivational and Emotional roots of Cognition and Action at the AISB-05 Conference, The Society for the Study of Artificial Intelligence and the Simulation of Behavior, 2005, 9-16.
  • 5ArKin R C. Dynamic replanning for a mobile robot based on internal sensing[ C]. Proceedings of IEEE International Conference on Robotics and Automation, 1989, (3) : 1416-1421.
  • 6黄国锐,徐敏,张荣,曹先彬,王煦法.基于内分泌调节机制的机器人行为规划算法及其应用研究[J].小型微型计算机系统,2004,25(2):262-265. 被引量:7
  • 7Yao Tai, Luo Zi-qiang. Physiology[ M ]. Beijing: People's Medical Publishing Press, 2001.
  • 8Kitano H. A model for hormone modulation of learning[ C]. International Joint Conference on Artificial Intelligence, 1995.
  • 9Lin Long-ji. Self-improving reactive agents based on reinforcement learning, planning and teaching[ J]. Machine Learning, 1992, 8, 293-321.

二级参考文献11

  • 1[1]Yang X, Meng M. Neural network application in robot motion planning[C]. IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, 1999 611~614.
  • 2[2]Nishimura T, etc. A motion planning method for a hyper multi-joint manipulator using genetic algorithm[C]. IEEE SMC '99 Conference Proceedings, vol.4, 645~650.
  • 3[3]Bevly D M, Farritor S, Dubowsky S. Action module planning and its application to an experimental climbing robot[C]. IEEE International Conference on Robotics and Automation, Vol.4, 2000 4009~4014.
  • 4[4]Will P, Casta?o A, Shen W M. Robot Modularity for Self-Reconfiguration[C]. Proc. SPIE Sensor Fusion and Decentralized Control II, 1999, 236~245.
  • 5[5]Shen W M, Lu Y, Will P. Hormone-based control for self-reconfigurable robots[C]. Proc. Intl. Conf, Autonomous Agents, 2000,1~8.
  • 6[6]Shen W M, Salemi B, Will P. Hormone for self-reconfigurable robots[C]. Proc. Intl. Conf, Intelligent Autonomous Systems, 2000,918~925.
  • 7[7]Salemi B, Shen W. M, Will P. Hormone controlled metamorphic robots[C]. Proc. Intl. Conf, Robotics and Automation, 2001,4194~4199.
  • 8[8]Canamero D. A hormonal model of emotions for behavior control[C]. ECAL'97, 28~31.
  • 9[9]Ogata T, Sugano S. Emotional communication between humans and the autonomous robot which has the emotion model[J]. IEEE Intl. Conf, Robotics and Automation, 1999, 4, 3177~3182.
  • 10[10]Tambe M, etc. Building agent teams using an explicit teamwork model and learning[J]. Artificial Intelligence, 1999, 110: 215~239.

共引文献6

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部