期刊文献+

单次重复试验的三水平析因设计的分析 被引量:2

On the Analysis of Three-Level Factorial Designs with only One Replicate
原文传递
导出
摘要 由于试验材料、费用和时间等条件的限制,仅有单次重复试验的三水平析因设计经常要应用在农业、工业和医学临床试验等领域。例如,在医学临床试验中,为找到影响治疗关节炎效果的重要因子和最佳治疗方案需要考虑2个三水平的因子:A(药物治疗)和B(运动治疗),由于只能找到9位病情相似的病人进行试验,故只能实施仅有单次重复试验的三水平析因设计3~2。不幸的是,交互作用A×B也可能存在,这样就没有剩余自由度用于估计误差的方差,从而通常的方差分析方法不再能用于数据分析。针对上述问题,本文提出了三个基于均方误差的检验统计量用于分析单次重复试验的三水平析因设计。通过实例表明用这些方法不仅能检验所考虑因子的主效应,而且还能同时检验交互效应。相应检验所用的一些常用临界值提供在附录中。并且,还通过大量的模拟研究对所提出的三个检验方法进行了比较。结果显示,T_^((3))检验在三个检验方法中具有最大的功效。 In clinical trials,three-level factorial designs with only one replicate are sometimes needed due to the lack of homogenous trial objects,trial materials,trial time,and so on.For example,to find out the best therapy of improving the ability of activity of knee osteoarthritis(KOA) patients,two factors A(medication treatment) and B(exercise treatment),each at three levels,should be considered in a clinical trial.The interaction,A×B,between factors A and B might exist.Unfortunately,only a few of patients,whose situations are similar enough fairly to compare the treatments,could be found amongst a lot of KOA patients,so that an unreplicated 3~2 design could just be carried out.Unfortunately,the ordinary ANOVA is inapplicable because of no degrees of freedom left to estimate the error variance in this case.In this paper,three mean-square-based test procedures are proposed to identify possibly significant factors or interactions in three-level factorial designs with only one replicate.Critical values used in the proposed procedures for some three-level factorial designs are tabulated.It is illustrated that not only main effects but also interactions can be identified by the proposed tests at the same time in an unreplicated three-level factorial design.An extensive simulation study shows that the power of three proposed tests varies for different magnitudes and the number of significant factors or interactions.The test procedure T_k^((3)) is the most powerful over a wide range of the number of significant factors among three compared tests.
作者 陈颖
出处 《数理统计与管理》 CSSCI 北大核心 2010年第5期819-829,共11页 Journal of Applied Statistics and Management
基金 教育部留学归国人员科研启动基金 上海市重点学科项目(项目号:B803)
关键词 方差分析 饱和设计 随机模拟 检验方法 无重复析因设计 ANOVA saturated designs simulation study test procedures unreplicated factorials
  • 相关文献

参考文献18

  • 1Taguchi G. Introduction to Quality Engineering [M]. Tokyo: Asian Productivity Organization, 1986.
  • 2Box G E P and Meyer R D. An analysis for unreplicated fractional factorials [J]. Technometrics, 1986, 28: 11-18.
  • 3Berk K N and Picard R R. Significance tests for saturated orthogonal arrays [J]. Journal of Quality Technology, 1991, 23:79- 89.
  • 4Bissell A F. Interpreting mean squares in saturated fractional designs [J]. Journal of Applied Statistics, 1989, 16:7 -18.
  • 5Chen Y and Kunert J. A new quantitative method for analyzing unreplicated factorial designs [J]. Biometrical Journal, 2004, 46: 125-140.
  • 6Daniel C. Use of Half-normal plots in interpreting factorial two-level experiments [J]. Technometrics, 1959, (1): 311 -341.
  • 7Haaland P D and O'Connell M A. Inference for effect-saturated fractional factorials [J]. Technometrics, 1995, 37: 82-93.
  • 8Hamada M and Balakrishnan N. Analyzing unreplicated factorial experiments: A review with some new proposals [J]. Statistica Sinica, 1998, 8: 1-41.
  • 9Holms A G and Berrettoni J N. Chain-pooling ANOVA for two-level factorial replication-free exper- iments [J]. Technometrics, 1969, 11: 725-746.
  • 10Lenth R V. Quick and easy analysis of unreplicated factorials [J]. Technometrics, 1989, 31: 469-473.

二级参考文献50

  • 1[1]Aboukalam, M.A.F. and Al-Shiha, A.A., A robust analysis for unreplicated factorial experiments, Computational Statistics & Data Analysis, 36(1)(2001), 31-46.
  • 2[2]Al-Shiha. A.A. and Yang, S.-S., A multistage procedure for analyzing unreplicated factorial experiments, Biomettrical Journal, 41(1999). 659-670.
  • 3[3]Al-Shiha, A.A. and Yang, S.-S., Critical values and some properties of a new test statistic for analyzing unreplicated factorial experiments, Biometrical Journal, 42(2000), 605-616.
  • 4[4]Benski, H.C,, Use of a normality test to identify significant effects in factorial designs, J. Quality Technology, 21(1989),174-178.
  • 5[5]Benski, C., Strategies for simulating active and noise effects in unreplicated experimental designs, 1995 Proceedings of the Section on Quality and Productivity, Alexandria, VA: American Statistical Association, 88-92, 1995.
  • 6[6]Benski, C. and Cabau, E., Unreplicated experimental designs in reliability growth programs, IEEE Trans. Reliability,44(1995), 199-205.
  • 7[7]Berk. K.N. and Picard, R.R., Significance tests for saturated orthogonal arrays, J. Quality Technology, 23(1991),79 89.
  • 8[8]Birnbamm. A., On the analysis of factorial experiments without replication, Technometrics, 1(1959), 343-357.
  • 9[9]irnbaum, A.. A multi-decision procedure related to the analysis of single degrees of freedom, Annals of the Institute of Statistical Mathematics, 12(1961), 227-236.
  • 10[10]Bissell, A.F., Interpreting mean squares in saturated fractional designs, J. Appl. Statist., 16(1989), 7-18.

共引文献7

同被引文献13

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部