期刊文献+

基于线性混合模型的艾滋病最佳治疗时机选择 被引量:4

Linear Mixed Effect Model for the Best AIDS Treatment Timing
原文传递
导出
摘要 本文利用美国艾滋病医疗试验机构ACTG的193A研究中的一组非平衡重复测量数据。以log(cd4+1)为体现疗效的因变量,年龄、性别为固定效应,治疗时间和滞后治疗时间为随机效应,同时考虑疗法对疗效的影响引入其与治疗时间的交互效应,建立线性混合效应模型。用SAS软件求解。再通过建立以治疗时间斜率随机效应为因变量初始logcd4为解释变量的回归模型判断艾滋病最佳治疗时机。结果表明,当初始cd4为185个/mm^3时治疗时机最佳,即为无症状感染的晚期.与美国DHHS推荐的小于200个/mm^3一致,却更为科学和精确。本研究对艾滋病治疗的临床实践具有重要的指导意义。 In this paper,we use a group of non-equilibrium repeated measurement data from the 193A study of ACTG,logcd4 to reflect the curative effect of the dependent variable.Taking age,gender as fixed effect treatment time and lag time as random effect,for taking into account the impact of therapy on the efficacy and introducing its interaction with the treatment time,we establish linear mixed model. We use SAS to estimate.Through the establishment of regression model that the slope of treatment time as dependent variable initial logcd4 as explanation variable,we determine the best AIDS treatment time. The results show that When the initial 184.7317 for cd4,the best time for treatment,which is the later stage of none symptom infection.This is less than recommended by the U.S.DHHS 200/mm^3 consistent, but more scientific and accurate.This study has an important significance for the clinical practice of HIV treatment.
出处 《数理统计与管理》 CSSCI 北大核心 2010年第5期921-930,共10页 Journal of Applied Statistics and Management
关键词 艾滋病 重复测量数据 混合效应模型 回归模型 AIDS repeated measure data mixed effect model regression model
  • 相关文献

参考文献8

二级参考文献26

  • 1石美娟.ARIMA模型在上海市全社会固定资产投资预测中的应用[J].数理统计与管理,2005,24(1):69-74. 被引量:55
  • 2李丽霞,郜艳晖,张瑛.哑变量在统计分析中的应用[J].数理医药学杂志,2006,19(1):51-53. 被引量:58
  • 3杨云霞.时间序列预测模型及其应用[J].太原师范学院学报(自然科学版),2005,4(4):4-7. 被引量:13
  • 4Fai A H T, Cornelius P L. Approximate F-Tests of multiple degree of freedom hypotheses in generalized lest squares analyses of unbalanced split-plot experiments [ J ]. J. Statist. Comput. Simul. , 1996,54 : 363 - 378.
  • 5Giesbrecht F G, Bums J C. Two-stage analysis based on a mixed model:large-sample asymptotic theory and small-sample simulation results[J] Biometrics,1985,41:477 -486.
  • 6Kenward M G, Roger J H. Small Sample Inference for fixed effects from restricted maximum likelihood [ J ] Biometrics, 1997,53:983 - 997.
  • 7Kackar A N, Harville D A. Unbiasedness of two-stage estimation and precision procedures for mixed linear models [ J ]. Communications in Statistics, Series A , 1981,10 : 1249 - 1261.
  • 8SAS Institute Inc. SAS OnlineDoc, Version 8, Cary, NC : SAS Institute Inc. 1999.
  • 9Satterthwaite F E. Synthesis of variance[ J ]. Psychometrika, 1941,6:309 - 316.
  • 10Piepho H P. Analysis of randomized block design with unequal subclass numbers [ J ].Agronomy of Journal, 1997.89:718 - 723.

共引文献37

同被引文献46

引证文献4

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部