期刊文献+

基于Markov Chain Monte Carlo模型对医院出院病人调查表数据缺失的填补与分析 被引量:2

The Imputation and Analysis for the Missing Data of Survey of Patients Discharged from Hospital
原文传递
导出
摘要 目的对医院出院病人调查表普遍存在的数据缺失进行填补与分析,以保证统计调查表的质量,为医院以及上级卫生部门了解现状,进行预策和决策提供技术支持和质量保证。方法运用SAS9.1,采用多重填补方法Markov Chain Monte Carlo(MCMC)模型对缺失数据进行多次填补并综合分析。结果MCMC填补10次的结果最优。结论(Multiple Imputation)MI方法在解决医院出院病人调查表数据缺失时有优势,发挥空间较大,且填补效率较高。 Objective To approach the imputation and examination methods to solve the data missing problem generally existed in the survey of patients discharged from hospital,so that the statistic forms data quality and the skill support for examination and decision in the hospital and the upper health department knowing the present situation can be guaranteed.Methods Using SAS9.1,to fill up multiply and analyze comprehensively the missing data with Markov Chain Monte Carlo(MCMC) model.Results MCMC method is the best after 10 times imputations.Conclusion MI method has advantages solving the data missing of the survey of patients discharged from hospital,and it also has larger space and higher efficiency imputation.
出处 《数理统计与管理》 CSSCI 北大核心 2010年第5期931-936,共6页 Journal of Applied Statistics and Management
关键词 医院出院病人调查表 缺失值 多重填补 MARKOV CHAIN MONTE Carlo survey of patients discharged from hospital the missing value multiple imputation(MI) Markov Chain Monte Carlo(MCMC)
  • 相关文献

参考文献5

二级参考文献4

  • 1Rubin DB.Inference and missing data.Biometrika,1976,63(3):581-592.
  • 2Rubin DB.Multiple imputation: a primer.Statistical Methods in Medical Research,1999,8(1):3-15.
  • 3James MR.Inference for imputation estimators.Biometrika,2000,87(1):113-124.
  • 4SAS Institute Inc.SAS/STAT 9 User's Guide.North Carolina: SAS Institute Inc,2003.

共引文献17

同被引文献12

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部