期刊文献+

无线传感网络覆盖算法及仿真研究 被引量:2

Research on of Wireless Sensor Networks Coverage Simulation
下载PDF
导出
摘要 研究无线传感器覆盖算法,针对标准粒子群算法的网络覆盖存在收敛速度慢、易于陷入局部最优值的问题,为满足动态节点选择实时性的要求,提出一种多粒子群的无线传感网络覆盖算法。以无线传感器最大覆盖率为目标函数,通过多个粒子群彼此独立地搜索解空间,加大粒子的搜索范围,减小陷入局部最优的可能性。采用进化粒子,使粒子覆盖更有效率,提高了算法的寻优能力,有效地避免了标准粒子群算法容易出现的"早熟"问题,提高了算法的稳定性。仿真实验表明,与标准粒子群算法、传统遗传算法和新量子遗传算法的优化效果相比较,其覆盖率分别提高了8.39%、3.07%和0.75%;收敛速度提高了25.3%、23.8%和23.8%,证明粒子进化的多粒子群方法有效地优化无线传感网络,实现节点选择的实时性要求。 To maximize the network coverage and extend the life of the network,a Wireless Sensor Networks (WSNs) coverage optimal strategy is proposed based on the evolution of Multi-particle Particle Swarm Optimization (MPSO). By using the method of Multi-groups parallel searching,the particles,which fall into the best part area according to the theory of evolution,can be chosen rapidly. The strategy also avoids a phenomenon of premature which often occurs when using the method of elementary Particle Swarm Optimization (PSO),and improves the stability of the algorithm. In the paper,the influence about perceived radius of the nodes on the coverage performance is analyzed through the simulation experiment. The coverage rate and convergence rate increase as the radius of perception speeds up gradually. Experimental results indicate that the MPSO strategy is better than PSO,the Conventional Genetic Algorithms (CGA),and the New Quantum Genetic Algorithm (NQGA) in coverage optimization.
作者 顾钧
出处 《计算机仿真》 CSCD 北大核心 2010年第9期146-149,共4页 Computer Simulation
关键词 无线传感网络 覆盖优化 粒子进化 粒子群优化 覆盖率 Wireless sensor networks(WSN) Coverage optimization Particle evolution Particle swarm optimization(PSO) Coverage rate
  • 相关文献

参考文献9

二级参考文献112

  • 1屈玉贵,翟羽佳,蔺智挺,赵保华,张英堂.一种新的无线传感器网络传感器放置模型[J].北京邮电大学学报,2004,27(6):1-5. 被引量:24
  • 2闻英友 ,冯永新 ,王光兴 .无线传感器网络中基于伸展树的感知节点分布优化[J].自动化学报,2005,31(5):737-742. 被引量:4
  • 3付华,杜晓坤,陈峰.基于神经元网络的超声传感器补偿算法及在井下机器人避障中的应用[J].传感技术学报,2006,19(2):511-514. 被引量:5
  • 4Bulusu N,Heidemann J,Estrin D.GPS-Less low cost outdoor localization for very small devices.IEEE Personal Communications Magazine,2000,7(5):28-34.
  • 5He H,Huang C,Blum BM,Stankovic JA,Abdelzaher TF.Range-Free localization schemes in large scale sensor networks.In:Johnson DB,ed.Proc.of the ACM MobiCom 2003.San Diego:ACM Press,2003.81-95.
  • 6Romer K,Zurich E.The lighthouse location system for smart dust.In:Siewiorek D,ed.Proc.of the 1st Int'l Conf.on Mobile Systems,Applications,and Services.San Francisco:ACM Press,2004.15-30.
  • 7Okabe A,Boots B,Sugihara K,Chiu S.Spatial Tessellations:Concepts and Applications of Voronoi Diagram.2nd ed.,New York:John Wiley & Sons,1999.
  • 8Hochbaum DS.Approximation Algorithms for NP-Hard Problems.Cambridge:PWS Publishing Company,1995.
  • 9Cormen TH,Leiserson CE,Rivest RL,Stein C.Introduction to Algorithms.2nd ed.,Cambridge:MIT Press,2001.
  • 10Yah T,He T,Stankovic J.Differentiated surveillance service for sensor networks.In:Akyildiz IF,Estion D,eds.Proc.of the 1st Int'l Conf.on Embedded Networked Sensor Systems.Los Angels:ACM Press,2003.51-63.

共引文献286

同被引文献17

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部