期刊文献+

基于PSO的可能性C均值聚类算法的研究 被引量:4

Possibilistic C-Means Clustering Algorithm Based on Particle Swarm Optimization
下载PDF
导出
摘要 可能性C均值算法(PCM)是为了克服模糊C均值算法对噪声的敏感性而提出来的,但是它也存在一些缺陷,如易陷入局部最优,对初始条件敏感,导致聚类结果一致性等问题。针对以上问题,通过引进粒子群算法对其进行改进可以有效地避免这些问题,即提出了基于粒子群优化的可能性C均值聚类算法(PSO-PCM)。基于粒子群优化的可能性C均值聚类方法首先对编码过的数据点进行优化,然后对该方法产生的中心点进行聚类,在聚类的过程中根据适应度函数再进行调节。通过对给定数据集的聚类测试,结果表明,基于粒子群优化的可能性C均值聚类方法在收敛速度和全局寻优能力等方面有较大的改进。 The Possibility of C-means algorithm(PCM) is proposed to overcome the sensitivity of fuzzy C-means algorithm to noises. However,it also has some defects,such as easily to fall into local optimum,sensitivity to initial conditions and leading to consistency of clustering results. For the above problems,the particle swarm optimization algorithm can be improved to avoid them for possibilistic C-means algorithm,which is named PSOPCM. The new algorithm optimizes the encoded data points,and clusters the center points. And then,according to the fitness function,the center points are adjusted in the process of clustering. Through testing the given data set,the results show that PSOPCM algorithm has a greater improvement in convergence speed and global optimization ability.
出处 《计算机仿真》 CSCD 北大核心 2010年第9期177-180,共4页 Computer Simulation
基金 水下信息处理与控制国家级重点实验室基金(9140C2304100807)
关键词 粒子群优化的可能性均值 可能性均值 模糊均值 聚类算法 PSOPCM PCM FCM Cluster algorithm
  • 相关文献

参考文献5

二级参考文献19

  • 1张利彪,周春光,刘小华,马铭,吕英华,马志强.求解约束优化问题的一种新的进化算法[J].吉林大学学报(理学版),2004,42(4):534-540. 被引量:23
  • 2张雯,杨春明,罗雪春.改进的粒子群优化算法(英文)[J].微电子学与计算机,2007,24(2):70-72. 被引量:11
  • 3王洪春,彭宏.基于模糊C-均值的增量式聚类算法[J].微电子学与计算机,2007,24(6):156-157. 被引量:22
  • 4[3]KENNEDY J,SPEARS W M.Matching algorithms to problems;an experimental test of the particle swarm and some genetic algorithms on the muhimodd problemgenerator[C].Proceedings of the IEEE Int'1 Conferenee on Evolutionary Computation,Anchorage.AK,USA,1998-05:78-83.
  • 5[4]LIN Chin-teng,GEOR GE.Lee.C.S.Neural fuzzy systems[M].USA:Prentice-Hall International Inc,1996,12(7):35-38.
  • 6[5]KENNEDY J,EBERHART R C,SHI Y.Swarm intelligence[M].San Francisco:Morga Kaufman Publisher,2001:1942-1948.
  • 7James C Bezdek.Pattern Recognition with Fuzzy Objective Function Algorithms[M].New York:Plenum Press,1981.
  • 8Raghu Krishnapuram,James M Keller.A Possibilistic Approach to Clustering[J].IEEE Transactions on Fuzzy Systems,1993,1(2):98-110.
  • 9Ronald Aylmer Fisher.The Use of Multiple Measurements in Taxonomic Problems[J].Annals of Eugenics,1936,(7):179-188.
  • 10Heiko Timm,Christian Borgelt,Christian Dring,et al.Fuzzy Cluster Analysis with Cluster Repulsion[C].Proc.of the European Symp.on Intelligent Technologies,Germany,2001.

共引文献14

同被引文献53

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部