期刊文献+

基于Eclat算法的图书推荐系统仿真 被引量:4

Simulation of Book Recommender System Based on Eclat Algorithm
下载PDF
导出
摘要 研究了图书馆的个性化推荐系统应用问题,针对常用的协同过滤技术不适用于大数据量的情况,在深入研究关联规则Eclat算法的基础上,为了高效挖掘和优先搜索有效信息,提出了一种改进算法,并将算法应用于图书推荐系统的仿真实验中,新算法充分利用了垂直数据表示和交叉计数的高效优势,直接在垂直数据表示的数据集上通过广度优先搜索和交叉计数产生频繁模式,通过对流通数据库中的借阅记录进行挖掘得到关联规则,产生读者感兴趣的书目。仿真结果表明算法可以在大数据量的情况下实现关联规则的高效挖掘,在图书推荐系统中取得了良好的应用效果。 In the research on library's personal recommender system,collaborative filtering is the common method in recommender system,but it cannot handle large data efficiently. An improved algorithm based on Eclat is given in the paper. The new algorithm is applied in simulation experiments of book recommendation system. The new algorithm makes use of a vertical data representation and cross-count high-performance advantage,generates frequent patterns directly in the vertical data representation of the data set through the breadth-first search and cross-count. Association rules are generated from library database. The simulation results show that the algorithm can achieve an efficient association rule mining on large data,and the knowledge generated by the new algorithm is effective for book recommendation.
作者 陈康
出处 《计算机仿真》 CSCD 北大核心 2010年第9期311-314,共4页 Computer Simulation
关键词 图书推荐 关联规则 频繁模式挖掘 推荐系统 Book recommending Association rules Frequent pattern mining Recommender system
  • 相关文献

参考文献6

二级参考文献31

  • 1陈松生,王蔚.改进的快速模糊C-均值聚类算法[J].计算机工程与应用,2007,43(10):167-169. 被引量:13
  • 2王辉,高利军,王听忠.个性化服务中基于用户聚类的协同过滤推荐[J].计算机应用,2007,27(5):1225-1227. 被引量:43
  • 3Sarwar B,Karypis G,Konstan J,et al. Analysis of Recommendation Algorithms for E-Commerce. In: Proc. of the ACM E-Commerce 2000 Conf. 2000. 58~167
  • 4Breese J S, Heckerman D, Kadie C. Empirical Analysis of Predictive Algorithms for Collaborative Filtering. In.. Proc. of the 14th Annual Conf. on Uncertainty in Artificial Intelligence, 1998. 43~52
  • 5Zhang Tong, Iyengar V S. Recommender Systems Using Linear Classifiers. Journal of Machine Learning Research, 2002 (2) : 313~334
  • 6Adomavicius G,Tuzhilin A. Recommendation Technologies: Survey of Current Methods and Possible Extensions. Working paper,Stern School of Business,New York University,2003
  • 7吴志宏.[D].朝阳科技大学,中国台湾,.
  • 8Sarwar B, Karypis G,Konstan J,et al. Item-based Collaborative Filtering Recommendation Algorithms. WWW10, Hong Kong,2001
  • 9McNee S M,Albert I,Cosley D,et al. On the Recommending of Citations for Research Papers. CSCW'02, New Orleans,Louisiana, USA, 2002
  • 10HAND D, MANNILA H, SMYTH P. Principles of Data Mining[ M]. Massachusetts Institute of Technology, 2001.

共引文献44

同被引文献96

引证文献4

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部