期刊文献+

保特征的加权最小二乘三角网格光顺算法 被引量:7

Feature-preserving Mesh Smoothing Algorithm Based on the Weighted Least Squares
下载PDF
导出
摘要 在逆向工程和计算机图形学中,由扫描得到的数据多存在噪声,为了对其进行光顺处理,提出一种基于加权最小二乘思想的保特征网格光顺算法.首先提出一个关于光顺后网格顶点或者法向的离散二次能量函数,该能量一方面满足光顺后的网格在除特征点外的地方处处光滑的同时,还满足光顺后网格与原噪声网格尽可能相似;然后对此能量函数关于每个顶点求偏导数并使其为0,得到一个线性方程组,求解该方程组得到光顺后的网格.实验结果表明,该算法是线性的,复杂度低,且无需人工交互就可以很好地保持网格的尖锐特征,还能避免发生收缩现象. Mesh smoothing is often required in the inverse engineering and computer graphics applications where the acquisition data are usually very noisy.In this paper we propose a feature-preserving mesh smoothing algorithm based on the weighted least squares.A discrete quadratic energy related to the smoothed mesh vertices and normal is introduced which considers not only the overall smoothness of the mesh but also the preservation of the fine features of the original model.Then a quadratic objective function based on this energy is minimized by solving a sparse linear system to get the smoothed mesh.Experiments have shown that this linear,easy to implement algorithm can preserve sharp features without any user intervention,and can avoid shrinkages very well.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2010年第9期1497-1501,共5页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金委员会与微软亚洲研究院联合资助(60776799) 国家"九七三"重点基础研究发展计划项目(2009CB320801)
关键词 三角网格 光顺 加权最小二乘 保特征 法向 triangular mesh smoothing weighted least squares feature-preserving normal
  • 相关文献

参考文献18

  • 1Field D A.Laplacian smoothing and Delaunay triangulations[J].Communications in Applied Numerical Methods,1988,4(6):709-712.
  • 2Taubin G.A signal processing approach to fair surface design[C] //Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques.Los Angeles:ACM Press,1995:351-358.
  • 3Desbrun M,Meyer M,Schr(o)der P,et al.Implicit fairing of irregular meshes using diffusion and curvature flow[C] //Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques.Los Angeles:ACM Press,1999:317-324.
  • 4Kobbelt L,Campagna S,Vorsatz J,et al.Interactive multi-resolution modeling on arbitrary meshes[C] //Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques.Orlando:ACM Press,1998:105-114.
  • 5Liu X G,Bao H J,Heng P A,et al.Constrained Fairing for Meshes[J].Computer Graphics Forum,2001,20(2):115-123.
  • 6Clarenz U,Diewald U,Rumpf M.Anisotropic geometric diffusion in surface processing[C] //Proceedings of the Conference on Visualization.Salt Lake City:IEEE Computer Society Press,2000:397-405.
  • 7Bajaj C L,Xu G L.Anisotropic diffusion of surfaces and functions on surfaces[J].ACM Transactions on Graphics,2003,22(1):4-32.
  • 8Jones T R,Durand F,Desbrun M.Non-iterative,feature-preserving mesh smoothing[C] //Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH.San Diego:ACM Press,2003:943-949.
  • 9Hildebrandt K,Polthier K.Anisotropic filtering of non-linear surface features[J].Computer Graphics Forum,2004,23(3):391-400.
  • 10赵欢喜,徐国良.用反调和平均曲率流实现网格保特征平滑[J].计算机辅助设计与图形学学报,2006,18(3):325-330. 被引量:3

二级参考文献30

  • 1Moreton H,Sequin C.Functional optimization for fair surface design[J].ACM Computer Graphics,1992,26(2):167-176
  • 2Welch W,Witkin,A.Variational surface modeling[J].ACM Computer Graphics,1992,26(2):157-166
  • 3Taubin G.A signal processing approach to fair surface design[C]//Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,Los Angeles,1995:351-358
  • 4Vollmer J,Mencl R,Muller H.Improved Laplacian smoothing of noisy surface meshes[J].Computer Graphics Forum,1999,18(3):131-138
  • 5Belyaev A,Ohtake Y.A comparison of mesh smoothing methods[C]//Proceedings of Israel-Korea Bi-national Conference on Geometric Modeling and Computer Graphics,Tel Aviv,Israel,2003:83-87
  • 6Alexa M.Wiener filtering of meshes[C]//Proceedings of Shape Modeling International,Calgary,Alberta,2002:51-57
  • 7Bajaj C,Xu G.Anisotropic diffusion of subdivision surfaces and functions on surfaces[J].ACM Transactions on Graphics,2003,22(1):4-32
  • 8Desbrun M,Meyer M,Schroder P,et al.Anisotropic feature-preserving denoising of height fields and bivariate data[C]//Proceedings of Graphics Interface,Montréal,Québec,2000:145-152
  • 9Tasdizen T,Whitaker R T,Burchard P,et al.Anisotropic geometric diffusion in surface processing[C]//Proceedings of IEEE Visualization,Salt Lake City,Utah,2000:397-405
  • 10Xu G.Surface fairing and featuring by mean curvature motions[J].Journal of Computational and Applied Mathematics,2004,163(1):295-309

共引文献12

同被引文献139

引证文献7

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部