期刊文献+

关于保距离映射(英文)

On Mappings of Conservative Distances
下载PDF
导出
摘要 对于保持两个或多个距离的映射f:X→Y来说,其关于推广的Aleksandrov问题的几种情况在本文中被解决.这里的X和Y都是指实内积空间,并且X的维数大于一. Several cases about the general Aleksandrov problem are resolved for some mapping f.. X→Y preserving two or more distances, where let X and Y be two real inner product spaces with the dimension of X greater than one.
作者 马正博
出处 《南开大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第4期90-93,共4页 Acta Scientiarum Naturalium Universitatis Nankaiensis
基金 Supported by National Natural Science Foundation of China(10571090) the Research Fund for the Doctoral Program of Higher Education(20060055010)
关键词 内积空间 平行四边形 等距映射 inner product space parallelogram isometry
  • 相关文献

参考文献7

  • 1Aleksandrov A D. Mapping of families of sets[J].Soviet Math Dokl, 1970, 11:116-120.
  • 2Beckmen F S, Quarles D A. On isometries of Euclidean spacesD]. Proc Amer Math Soc, 1953(4): 810-815.
  • 3Rassias Th M. Is a distance one preseving mapping between metric spaces always an isometry[J]. Amer Math Monthly, 1983, 90: 200.
  • 4Rassias Th M. Mappings that preserve unit distance[J]. Indian J Math, 1990, 32: 275-278.
  • 5Benz W. Isometrien in normierten Raumen[J]. Aequationes Math, 1985, 29: 204-209.
  • 6Xiang Shuhuang. Mappings of conservative distances and the Mazur-Ulam theorem[J]. J Math Anal Appl, 2001, 254: 263-274.
  • 7Wang Risheng. Real functions preserving some values of distance[J]. Acta Scientiarum Naturalium Univ Nankaiensis, 2003, 36(3): 53-56.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部