期刊文献+

基于混合像元分解的MODIS积雪面积信息提取及其精度评价——以天山中段为例 被引量:20

A Study on Methods and Accuracy Assessment for Extracting Snow Covered Areas from MODIS Images Based on Pixel Unmixing:A Case on the Middle of the Tianshan Mountain
原文传递
导出
摘要 MODIS(Moderate Resolution Imaging Spectroradiometer)是现阶段积雪遥感监测及积雪水文学研究中积雪面积信息获取的重要平台,但其空间分辨率相对较低,影像中混合像元现象普遍存在。本文以MOD02HKM数据为基础,通过线性光谱混合模型(LSMM,Linear Spectral Mixing Model)对研究区MODIS影像进行像元分解,从中提取积雪面积信息,并进行精度评价。将线性光谱混合模型得到的积雪面积信息与美国国家冰雪数据中心提供的MOD10A1日积雪覆盖数据影像进行对比分析。结果表明:利用线性光谱混合模型可以较好的分解出像元中积雪面积信息,其分类精度达0.88;相同位置上MOD10A1的积雪分类精度为0.80。说明,对MODIS影像上积雪信息提取来说,线性光谱混合模型的分类精度较高,具有较强的适用性。 Moderate Resolution Imaging Spectroradiometer(MODIS)is a critical remote sensing data source in snow monitoring and snow hydrology study.However,mixed pixel is a common problem encountered in using satellite data with moderate or low spatial resolution.Relatively low spatial resolutions(i.e.,250 m,500 m,and 1000 m)have limited widespread applications of MODIS data in research,such as snow area extraction,snow water evaluation and snowmelt runoff simulation.In this paper,the author extracted the snow area from MOD02 HKM image,one of the three MODIS L1B products(MOD02 QKM,MOD02 HKM,MOD02 1KM)at 500 m spatial resolution acquired from U.S.National Aeronautics and Space Administration(NASA),aiming to extract snow area at sub pixel scale on the basis of the line spectral mixture model(LSMM).In addition,the authors compared the classification accuracy of extracted snow area with the snow cover map derived from MOD10A1 grey level snow and ice products of the same image acquisition time and spatial resolution provided by the U.S.National SnowIce Data Center(NSIDC),and subsequently estimated their classification accuracies with the binary snow-covered area derived from Landsat 5 TM data at 30 m spatial resolution based on the SNOMAP algorithm using the quality accuracy assessment method.For better running LSMM and eliminating cloud effects on snow area extraction,cloud-free days in May 15,2007,were selected for this study.Results indicated that the use of the line spectral mixture model in snow area extraction can provide better snow classification accuracy,showing the quantity accuracy assessment result of 0.88 and a standard deviation of 0.087 at a 3×3 pixel scale,while the classification accuracy of MOD10A1 grey level snow and ice product was found to be 0.80 and 0.135,respectively,at the same locations and statistical scales.This suggests that the line spectral mixture model could be effective in snow area extraction from MODIS data of relatively low spatial resolutions.
出处 《资源科学》 CSSCI CSCD 北大核心 2010年第9期1761-1768,共8页 Resources Science
基金 国家973计划前期研究专项课题:"气候变化对天山中段山区积雪资源和融雪径流过程的影响"(编号:2009CB426309) 中国科学院知识创新重要方向项目:"新疆玛纳斯绿洲水盐迁移转化规律与演变趋势研究"(编号:KZCX2-YW-BR-12)
关键词 混合像元 MOD02HKM MOD10A1 线性光谱混合模型 精度评价 Mixed pixel MOD02 HKM MOD10A1 Quantity accuracy assessment Middle of the Tianshan Mountain
  • 相关文献

参考文献22

  • 1Hall D.K., Riggs G.A., Salomonson V.V.. Algorithm theoretical basis document (ATBD) for the MODIS snow and sea ice-mapping algorithms [EB/OL]. http://modis-snow-ice.gsfc.nasa.gov/at bd01.html,/2009-11 - 12.
  • 2Rango A., Martinec J. Application of a snowmelt runoff model using Landsat Data[J]. Nordic Hydrology, 1979, 10: 225-238.
  • 3Rango A..Spaceborne remote sensing for snow hydrology applications[J].Hydrological Science Journal, 1996, 41 (4): 477-494.
  • 4Songweon L., Andrew G.K., Thomas M.O.. A comparison of MODIS and NOHRSC snow cover products for simulating streamflow using the snowmelt runoff model [J].Hydrological Processes, 2005, 19 ( 15 ): 2951-2972.
  • 5Amer A.T., Zuhal A., Arda A. S., et al. Using MODIS snow cover map in model snowmeh runoff process in the estern part of turkey [J]. Remote Sensing of Environment, 2005, 97(2): 216-230.
  • 6Pascal S., Renaud M., Yves A.. Subpixel monitoring of the seasonal snow cover with MODIS at 250m spatial resolution in the Southern Alps of New Zealand: Methodology and accuracy assessment [J]. Remote Sensing of Environment, 2009, 113 (1): 160-181.
  • 7郑有飞,范旻昊,张雪芬,吴荣军.基于MODIS遥感数据的混合像元分解技术研究和应用[J].南京气象学院学报,2008,31(2):145-150. 被引量:18
  • 8吴健平,杨星卫.用NOAA/AVHRR数据估算上海地区水稻种植面积[J].应用气象学报,1996,7(2):190-194. 被引量:28
  • 9李郁竹,曾燕.应用NOAA/AVHRR数据测算局地水稻种植面积方法研究[J].遥感学报,1998,2(2):125-130. 被引量:44
  • 10李霞,王飞,徐德斌,刘清旺.基于混合像元分解提取大豆种植面积的应用探讨[J].农业工程学报,2008,24(1):213-217. 被引量:25

二级参考文献166

共引文献377

同被引文献281

引证文献20

二级引证文献180

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部