期刊文献+

新型示踪MHC-I类分子方法的建立 被引量:3

Establishment of new methods for tracing MHC class I molecules
下载PDF
导出
摘要 目的采用位点特异性荧光蛋白标记技术建立新型示踪MHC-I类分子的方法,比较TCtag和halotag在体细胞和抗原递呈细胞中示踪MHC-I类分子的优缺点。方法构建H-2Kb-TCtag和H-2Kb-halotag融合蛋白的真核慢病毒表达载体,转染293FT细胞制备病毒,将病毒分别感染体细胞293FT和树突状细胞系DC2.4细胞后,TCtag采用染料ReAsH和FlAsH染色,Halotag采用染料HaloTagTMR染色,在激光共聚焦显微镜下观察H-2Kb的分布情况。结果通过激光共聚焦显微镜观察发现:TCtag与染料ReAsH和FlAsH只在293FT细胞内是特异性的结合;Halotag与用染料HaloTagTMR在293FT和DC2.4细胞内都是特异性结合的。结论从结合特异性上来看,Halotag标记MHC I类分子要优于TC-tag。 This study is aimed to establish new methods for tracing MHC class I by using site-specific fluorescent protein and to compare the advantages and disadvantages of Tetracysteine tag (TCtag) and Halotag in labeling MHC class I molecules in somatic cells (239FT) and antigen-presenting cells (DC2.4). Lentiviral expressing vectors of H-2Kb-TCtag and H-2Kb-Halotag were constructed and transiently transfected into 293FT cells for preparing lentivirus,which were subsequently used to infect 239FT and DC2.4 cells respectively for expressing MHC class I molecules. Then cells with TCtag labeled with ReAsH or FlAsH,while Halotag with HaloTagTMR. Finally the distribution of H2-Kb was observed by confocal microscope. We found that only in 293FT cells,the binding of TCtag with ReAsH or FlAsH were specific,while the binding of halotag with HaloTag TMR was specific in both 293FT and DC2.4 cells. All these results suggested that the binding specificity of Halotag is much better than that of TC-tag for labeling MHC class I molecules.
出处 《免疫学杂志》 CAS CSCD 北大核心 2010年第9期809-812,共4页 Immunological Journal
基金 国家自然科学基金(30871224 30972802 60873103 30571714) 教育部新世纪优秀人才支持计划(NCET-06-0780)
关键词 绿色荧光蛋白 MHC-I类分子 Tetracysteine TAG HALOTAG Green fluorescent proteins MHC class I Tetracysteine tag Halotag
  • 相关文献

参考文献11

  • 1Shimomura O. Structure of the chromophore of Aequorea green fluorescent protein [J]. FEBS Letters, 1979, 104 (2): 220-222.
  • 2Chalfie M, Tu Y, Euskirchen G, et al. Green fluorescent protein as a marker for gene expression [J]. Science, 1994, 263 (148): 802-805.
  • 3Grifin BA, Adams SR, Tsien RY. Specific covalent labeling of recombinant protein molecules inside live cells [J]. Science, 1998, 281 (5374): 269-272.
  • 4Gaietta G, Deerinck TJ, Adams SR, et al. Multicolor and Electron Microscopic hnaging of connexin trafficking [J]. Science, 2002, 296 (5567): 503-507.
  • 5Andresen M, Schmitz Salue R, Jakobs S. Short tetracysteine tags to beta-tuhulin demonstrate the significance of small labels for live cell imaging [J]. Mol Biol Cell, 2004, 15 (12): 5616-5622.
  • 6Arhel N. Genovesio A, Kim KA, et al. Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes [J]. Nat Methods, 2006, 3 (10): 817-824.
  • 7Roberti MJ, Bertoncini CW, Klement R, et al. Fluorescence imaging of amyloid formation in living cells by a functional, tetracysteine-tagged alpha-synuclein[J]. Nat Methods, 2007, 4 (4): 345-351.
  • 8Turville SG, Aravantinou M, Stossel H, et al. Resolution of de novo HIV production and trafficking in immature dendritic cells [J]. Nat Methods, 2008, 5 (1): 75-85.
  • 9Coleman BM, Nisbet RM, Han S, et al. Conformational detection of prion protein with biarsenical labeling and FlAsH fluorescence [J]. Biochem Biophys Res Commun, 2009, 380 (3): 564-568.
  • 10Los GV, Darzins A, Zimprich C, et al. HaloTag interchangeable labeling technology for cell imaging, protein capture and immobilization [J]. Promega Cell Notes, 2005, 11:2-6.

二级参考文献8

  • 1Rana TM. Illuminating the silence: understanding the structure and function of small RNAs [ J ]. Nature, 2007, 8 (1): 23-36.
  • 2Bartell DP. MiRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116 (1) : 281 - 297.
  • 3Taganov KD, Boldin MP, Baltimore D. MicroRNAs and immunity: tiny Players in a big field[J]. Immunity, 2007, 26 (1):133- 137.
  • 4Taganov KD, Boldin MP, Chang KJ, et al. NF-kappaB- dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses[J]. Proc Natl Acad Sci USA, 2006, 103 (33) : 12 481 - 12 486.
  • 5Monticelli S, Ansel KM, Xiao C, et al. MicroRNA profiling of the murine hematopoietic system[J]. Genome Biol, 2005, 6 (8) : R71.
  • 6Sonkoly E, Wei T, Janson PC, etal. MicroRNAs: novel regulators involved in the pathogenesis of Psoriasis? [ J]. PLoS ONE, 2007, 2 (7) : e610.
  • 7Stanczyk J, Pedrioli DM, Brentano F, et al. Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis[J]. Arthritis Rheum, 2008, 58 (4) : 1 001 - 1 009.
  • 8Nakasa T, Miyaki S, Okubo A, et al. Expression of MicroRNA-146 in Rheumatoid Arthritis Synovial Tissue [J]. Arthritis Rheum, 2008, 58 (5): 1 284- 1 192.

共引文献1

同被引文献72

  • 1王莉,赵建平,唐艳,杨空明,牛微,赵婷婷,徐文岳,吴玉章.ER滞留信号肽对外源CTL表位进入胞内MHC-Ⅰ类抗原呈递途径的促进作用[J].免疫学杂志,2006,22(5):471-474. 被引量:2
  • 2Armstrong KM, Insaidoo FK, Baker BM. Thermodynamics of T-cell receptor-peptide/MHC interactions: progress and opportunities [J]. J Mol Recognit, 2008, 21 (4): 275-287.
  • 3Doytchinova IA, Flower DR. Toward the quantitative prediction of T cell epitopes: CoMFA and CoMSIA studies of peptides with affinity for the classI MHC molecule HLA- A*0201 [J]. J Med Chem, 2001, 44 (22): 3572-3581.
  • 4Roomp K, Antes I, Lengauer T. Predicting MHC class I epitopes in large datasets [J]. BMC Bioinformatics, 2010, 11: 90-100.
  • 5Lafuente EM, Reche PA. Prediction of MHC-peptide binding: a systematic and comprehensive overview [J]. Current Pharmaceutical Design, 2009, 15 (28): 3209-3220.
  • 6Kim Y, Sidney J, Pinilla, et al. Derivation of an amino acid similarity matrix for peptide: MHC binding and its application as a Bayesian prior [J]. BMC Bioinformatics, 2009, 10: 394-494.
  • 7Peters B, Bui HH, Frankild S, et al. A community resource benchmarking predictions of peptide binding to MHC-I molecules [J]. PLoS Comput Biol, 2006, 2(6): e65.
  • 8Bui HH Sidney J, Peters B, et al. Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications [J]. Immunogenetics, 2005, 57 (5): 304-314.
  • 9Peters B, Sette A. Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method [J]. BMC Bioinformatics, 2005, 6:132.
  • 10Nielsen M, Lundegaard C, Worning P, et al. Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach [J]. Bioinformatics, 2004, 20 (9): 1388-1397.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部