期刊文献+

阶对有限群的刻画 被引量:2

Characterization of Finite Groups by Order
下载PDF
导出
摘要 令πe(G)表示G中元的阶之集。对于所有有限单群,已证明其均可由元阶集及群阶进行刻画。即设G为群,H为有限单群,则当GH且仅当(1)πe(G)=πe(H);(2)G=H。本文继续这一研究,对两类有限非单群进行讨论。首先在不使用2qp阶群的分类的前提下证明了所有阶为2qp(q<p为不同的奇素数)的群可仅用元阶集和群阶加以刻画,然后利用23p阶群的分类证明了有6类23p(p为奇素数)阶群也可由元阶集和群阶唯一确定。 The concepts of the order of a group and its element orders are the most fundamental in group theory.They play an important role in the quantitative structure of groups.It is interesting to find out which groups those can be characterized by their element orders and group orders.Let πe(G) denote the set of all orders of elements in group G.It has been proved recently that all the simple groups can be characterized by the set of element orders and the order of group.Let G be a group and H a finite simple group.Then G if and only if 1) πe(G) = πe(H) ,and 2) G = H .In this paper,we continue the discussion of two series finite nonsimple groups.We proved that G can be characterized by πe(G) and G without using their constructions,where G are groups with order 2qp,q pare odd prime numbers.Then we proved that G can be characterized by πe(G) and G by using their constructions,where G are six series groups with order23p ,p is an odd prime number.
作者 申虹 曹洪平
出处 《重庆师范大学学报(自然科学版)》 CAS 2010年第5期54-56,96,共4页 Journal of Chongqing Normal University:Natural Science
基金 国家自然科学基金(No.10771172)
关键词 有限群 群的阶 元的阶 finite group order of group set of element order
  • 相关文献

参考文献4

二级参考文献19

  • 1MAZUROV Victor Danilovich.On periodic groups with prescribed orders of elements[J].Science China Mathematics,2009,52(2):311-317. 被引量:1
  • 2王坤仁.极小子群与幂零性[J].四川师范大学学报(自然科学版),1995,18(2):16-20. 被引量:19
  • 3陶司兴,王品超.幂零群的若干充分条件[J].商丘师范学院学报,2006,22(5):33-35. 被引量:1
  • 4[3]陈重穆.内外∑与极小非∑群[M].重庆:西南师范大学出版社,1988.
  • 5[1]徐明耀.有限群导引(上)[M].北京:科学出版社,2001.
  • 6[2]Gorenstein D.Weakly Left Engle Element Fitine Groups[M].New York:Chelsea Publishing Company,1980.
  • 7Yuh Kang Pan* Chen Fee Chang (Department of Chemistry Boston College Chestnut Hill, Mass. 02167 U. S. A).Introductory Algebra for the Study of Quantum Mechanics[J]兰州大学学报,1981(02).
  • 8Cao Hongping,Shi Wujie. Pure quantitative characterization of finite projective special unitary groups[J] 2002,Science in China Series A: Mathematics(6):761~772
  • 9Shi Wujie. A characteristic property ofA 8[J] 1987,Acta Mathematica Sinica(1):92~96
  • 10K. Zsigmondy. Zur Theorie der Potenzreste[J] 1892,Monatshefte für Mathematik und Physik(1):265~284

共引文献36

同被引文献12

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部