期刊文献+

单质点弹性体系的小波变换 被引量:2

The Wavelet Transform for the System of Simple Elastic Particle
下载PDF
导出
摘要 利用小波变换对单质点弹性体系进行小波分析,给出了单质点弹性体系在脉冲响应下的输出信号的小波变换与该体系的输入信号的关系.作为算例,计算了在水平地震作用下单质点弹性体系的Har小波变换. The system of simple elastic particle is analyzed by wavelet transform, the relationship between the wavelet transform of output signal with the pulse response of system of simple elastic particle and input signal of that system is put forward.As an example, the Harr wavelet transform of system of simple elastic particle under the action of horizontal earthquake is calculated.
出处 《西北建筑工程学院学报(自然科学版)》 CAS 1999年第1期75-80,共6页 Journal of Northwestern Institute of Architectural Engineering
关键词 单质点弹性体系 小波变换 小波 system of simple elastic particle wavelet transform Harr wavelet
  • 相关文献

同被引文献57

  • 1高宝成,时良平,史铁林,杨叔子.基于小波分析的简支梁裂缝识别方法研究[J].振动工程学报,1997,10(1):81-85. 被引量:14
  • 2Biswajit Basu, Gupta Vinay K. Wavelet-Based Analysis of Non-Stationary Response of a Slipping Foundation. Journal of Sound and Vibration, 1999, 222(4) :547-563.
  • 3Biswajit Basu, Gupta Vinay K. Wavelet-Based Non-Stationary Response Analysis of Friction Based-lsolated Structure. Earthquake Engineering and Structural Dynamics, 2000,29 : 1 659 - 1 676.
  • 4Zhang Ray Ruichong, Shuo Ma, Erdal Safak, Stephen Hartzell. Hilbert-Huang Transform Analysis of Dynamic and Earthquake Motion Recordings.Journal of Engineering Mechanics, 2003, 129(8) :861-875.
  • 5Tso-Chien Pan, Chin Long Lee. Application of Wavelet Theory to Identify Yielding in Seismic Response of Bi-Linear Structures.Earthquake Engineering and Structural Dynamic, 2002, 31:379-398.
  • 6Staszewski W J. Identification of Damping in Mod Systems Using Time-Scale Decomposition. Journal of Sound and Vibration, 1997, 203(2):283 - 305.
  • 7Lamarque C H, Pemot S, Cuer A. Damping Identification in Multi-Degree-of Freedom Systems via a Wavelet-Logarithmic Decrement-Part 1: Theory. Journal of Sound and Vibration. 2000, 235:361- 374.
  • 8Slavic J, Simonovski I, Boltezar M. Damjping Identification Using a Continuous Wavelet Transform: Application to Real Data. Journal of Sound and Vibration, 2003, 262:291 - 307.
  • 9Kijeswski T, Kareem A. Wavelet Transform for System Identification in Civil Engineering Computer Aided Civil and Infrastructure Engineering.2003, 18:339 - 355.
  • 10Zhang Z Y, Hua H X, Xu X Z, Huang Z. Modal Parameter Identification through Gabor Expansion of Reponse Signals. Journal of Sound and Vibration, 2003, 266(5) :943 - 955.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部