期刊文献+

基于启发式广度优先搜索的SVR参数优化方法研究

Study on Parameters Optimization of Support Vector Regression Based on Heuristic Breadth-first Search Algorithm
下载PDF
导出
摘要 支持向量回归机(Support vector regressio,SVR)模型的拟合精度和泛化能力取决于其相关参数的选择,其参数选择实质上是一个优化搜索过程。根据启发式广度优先搜索(Heuristic Breadth first Search,HBFS)算法在求解优化问题上高效的特点,提出了一种以k-fold交叉验证的最小化误差为目标,HBFS为寻优策略的SVR参数选择方法,通过3个基准数据集对该模型进行了仿真实验,结果表明该方法在保证预测精度前提下,大幅度的缩短了训练建模时间,为大样本的SVR参数选择提供了一种新的有效解决方案。 The regression accuracy and generalization performance of support vector regression(SVR) models depend on a proper setting of its parameters,but parameters selection is an optimization problem.Motivated by the characteristic of heuristic breadth first search(HBFS) on optimization problem,a new automatic searching methodology based on HBFS algorithm is proposed in this paper.In this method,k-fold cross-validation error is used as the fitness function of HBFS,Results of 3 benchmark datasets show that the new method not only can assure the prediction precision but also can reduce training time markedly.The new method is an efficient solution to large-scale samples model optimization for SVR.
出处 《生物信息学》 2010年第3期219-222,共4页 Chinese Journal of Bioinformatics
基金 国家自然科学基金(30570352)
关键词 支持向量回归机 广度优先搜索 参数选择 交叉验证 Support vector regression Breadth first search Parameter optimization Cross-validation
  • 相关文献

参考文献14

二级参考文献32

  • 1董春曦,饶鲜,杨绍全,徐松涛.支持向量机参数选择方法研究[J].系统工程与电子技术,2004,26(8):1117-1120. 被引量:65
  • 2黄景涛,马龙华,钱积新.一种用于多分类问题的改进支持向量机[J].浙江大学学报(工学版),2004,38(12):1633-1636. 被引量:18
  • 3孙学勤,刘丽,付萍,王学厚.一种连续空间优化问题的蚁群算法及应用[J].计算机工程与应用,2005,41(34):217-220. 被引量:12
  • 4贺益君,俞欢军,陈德钊.基于募集机制的连续蚁群系统及其应用[J].浙江大学学报(工学版),2006,40(5):748-752. 被引量:4
  • 5Vapnik V. The Nature of Statistical Learning Theory. New York: Springer, 1999
  • 6Gunn S. Support Vector Machine for Classification and Regression. ISIS Report, Image Speech & Intelligent Systems Group, University of Southampton, 1998
  • 7vapnikVN 许建华 张学工.统计学习理论[M].北京:电子工业出版社,2004..
  • 8Tay F E H, Cao I. J. Application of support vector machines in financial time series forecasting[J]. Omega, 2001, 29(4): 309-317.
  • 9Thissen U, Brakel R V, Weijer A P D, et al. Using support vector machines for time series prediction[J].Chemometrics and Intelligent Lalzvoratory Systems,2003, 69(1-2): 35-49.
  • 10Momma M, Bennett K P. A pattern search method for model selection of support vector regression[A]. Proceedings of the SIAM International Conference on Data Mining[C]. Philadelphia: SIAM, 2002. 261-274.

共引文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部