期刊文献+

基于竞技排名模型实证研究与分析 被引量:2

Empirical Research and Analyse based on Competitive Ranking Model
下载PDF
导出
摘要 讨论了竞技排名现行总积分法,提出了以积分数为排名判据的方案.更进一步提出了特征向量算法,即根据数据构造水平比矩阵M,根据Perron-Frobenius定理,当M为不可约非负矩阵时,算出最大特征值对应的特征向量s,以s作为排名的依据.分别采用参数法和概率法构造矩阵M,在概率法中我们用极大似然估计的思想分析了比赛结果与两队水平比的关系,给出了每种算法的排名结果. This paper discusses competitive ranking actual total integral method, brings forward the precept of ranking based on integral scores and further more raises eigenveetor algorithm which structures level comparison matrix M based on data. According to Theorem Perron-Fmbenius, When M is an irreducible nonnegative matrix,we work out maximum eigenvalue corresponding eigenvector s which is the ranking basis. Adopting parameter method and probability method separately to structure matrix M, by using probability method we analyse the connection between competition results and two teams level comparison based on the idea of maximum likelihood estimation. Each method's ranking result is given.
机构地区 宁波大红鹰学院
出处 《吉林师范大学学报(自然科学版)》 2010年第3期77-81,共5页 Journal of Jilin Normal University:Natural Science Edition
基金 2009年浙江省教学团队(JTB09056)
关键词 竞技排名 数学模型 最大特征 极大似然估计 competitive ranking mathematical model most important feature maximum likelihood estimation
  • 相关文献

参考文献3

二级参考文献9

共引文献44

同被引文献18

  • 1程嘉言.球类运动竞赛法[M].北京:人民体育出版社,2002:179.
  • 2Simko I, Linacre JM. Combining partially ranked data in plant'breeding and biology: II. Analysis with Rasch model [J]. Communications in Biometry and Crop Science, 2010,5(1) :56 - 65.
  • 3Zintzaras E, Ioannidis JPA. Meta-analysis for ranked discovery datasets: Theoretical framework and empirical demonstration for microarrays [J]. Computational Biology and Chemistry, 2008,32( 1 ) : 39 - 47.
  • 4Cook WD, Golany B, Penn M, Raviv T. Creating a consensus ranking of proposals from reviewers' partial ordinal rankings[J]. Computers & Operations Research,2007,34 (4) :954 - 965.
  • 5Halekoh U, Kristensen K. Evaluation of treatment effects by ranking [J]. The Journal of Agricultural Science, 2008,146(4) :471 - 481.
  • 6Govan AY. Ranking theory with application to popular sports[D]. Ph.D. Thesis, North Carolina State University, Raleigh, NC. Dec,2008.
  • 7全乒乓.中性权衡胜负差率[DB/OL].http://bbs.allttcom/viewthread.phptid=125829.
  • 8中国乒乓球超级联赛官方网站.赛程成绩[DB/OL]http://stat.cttsl.sports.cn/showinfo/queryAllVsActiondo?method=queryAllVs.
  • 9Ranking Committee. World Ranking System. International Table Tennis Federation 内部资料.
  • 10Butnariu D.Values and cores of fuzzy Games with Infintely many Players[J].Intem J.Game Theory, 1987( 16):43-68.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部