期刊文献+

一类具扩散的非线性传染病模型的分析

Analysis of an Epidemic Model with Nonlinear Incidence Rate and Diffusion
下载PDF
导出
摘要 研究了一类具扩散的非线性传染病系统在Neumann边界条件下解的整体性态,通过构造Lyapunov函数给出了无病平衡点全局稳定以及染病平衡点局部稳定的充分条件.结果表明,当接触率小的时候无病平衡点是全局渐近稳定的. Solution's global behavior of an epidemic system with nonlinear incidence rate and spatial diffusion is studied. A sufficient conditionfor the global asymptotical stability of disease-free equilibrium and the local asymptotical stability of endemic equilibrium is investigated by using a Lyapunov function. The results show that the disease-free equilibrium is globally asymptotically stable if the mass action coefficient is small.
出处 《吉林师范大学学报(自然科学版)》 2010年第3期104-107,110,共5页 Journal of Jilin Normal University:Natural Science Edition
关键词 非线性传染率 扩散 LYAPUNOV函数 传染病模型 nonlinear ineidence rate diffusion Lyapunov functional epidemic model
  • 相关文献

参考文献4

  • 1W. O. Kermack, A. G. McKendrick, Contributions to the mathematical theory of epidenmics[ J], Proc. Roy. Soc. 1927,700 - 721.
  • 2Henry D. Geometric Theory of Semilinear Parabolic Equations,Lecture Notes in Mathematics[ M]. Berlin:Springer, 1993.
  • 3Brown K J, Dunne P C, Gardner R A. A semilinear parabolic system arising in the theory of superconductivity[J]. J Diff Equ, 1981,40( 2 ):232-252.
  • 4P. Y. H.Pang,M.X. Wang, Straegy and stationary pattern in a three-species predator-prey model[J].J. Differential Equations,2004,200:245 - 273.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部