期刊文献+

非线性检验及预测在污水处理厂评价中的应用 被引量:2

Application of Nonlinearity Test and Prediction in Assessment of Sewage Disposal Plants
下载PDF
导出
摘要 为了避免污水处理厂规模盲目扩大造成的投资效率低下的现象发生,科学地预测合理的用水量必不可少。基于用水量的实际历史数据,利用BDS检验、Box-Pierce检验和Box-Ljung检验以及非线性检验,如代替数据检验Surrogate date test、Hinich双谱检验、White人工神经网络检验来选择时间序列重构预测模型。根据实际用水量情况,比较各种不同重构模型预测误差,包括线性AR模型以及随机森林、随机梯度Boosting、支持向量、人工神经网络和自适应样条等。结果表明,有着非线性关系的人工神经网络误差最小,符合检验结果。 Scientific prediction of reasonable water consumption is inevitable to avoid blind expansion in sewage disposal plants with low efficiency of investment.Historical data were collected.Independent tests such as BDS,Box-Pierce and Box-Ljung tests and nonlinearity tests including surrogate data,Hinich's bispectrum and White's artificial neuron network tests were applied jointly.The reconstruction prediction model is selected through these tests.The prediction errors of AR,random forest,stochastic gradient boosting,support vector,artificial neuron network and multivariate adaptive regression splines were calculated based on real consumption.The results show that artificial neuron network with nonlinear relation exhibits the minimal error,which accords with the conclusion of all tests.
作者 张世英 李琦
出处 《天津大学学报(社会科学版)》 CSSCI 2010年第4期318-321,共4页 Journal of Tianjin University:Social Sciences
基金 国家自然科学基金资助项目(10772132) 中国博士后科学基金资助项目(20060400706)
关键词 用水量 非线性检验 预测 随机梯度Boosting water consumption nonlinearity test prediction stochastic gradient boosting
  • 相关文献

参考文献12

  • 1王洪礼,韩红臣,李胜朋,史道济.城市用水量随机梯度回归分析[J].天津大学学报(社会科学版),2008,10(3):225-227. 被引量:2
  • 2李栋,王洪礼,杜忠晓,王长江,陈炳林.城市生活用水量的支持向量回归预测[J].天津大学学报(社会科学版),2006,8(1):64-67. 被引量:21
  • 3Brock W A,Dechert W D,Scheinkman J A.A Test for Independence Based on the Correlation Dimension[R].Madison:University of Wisconsin-Madison,1986.
  • 4Ljung G M,Box G E P.On a measure of lack of fit in time series models[J].Biometrika,1978,65:553-564.
  • 5Hinich M.Testing for Gaussianity and linearity of a stationary time series[J].Journal of Time Series Analysis,1982,3(3):169-176.
  • 6Theiler J,Eubank S,Longtin A,et al.Testing for nonlinearity in time series:The method of surrogate data[J].Physical D Nonlinear Phenomena,1992,58:77-94.
  • 7White H.An additional hidden unit test for neglected nonlinearity in multilayer feed-forward networks[C] //Proceedings of the International Joint Conference on Neural Networks.New York:IEEE Press,1989(2):451-455.
  • 8Schreiber T,Schmitz A.Improved surrogate data for nonlinearity tests[J].Physical Review Letter,1996,77(4):635-638.
  • 9Teraesvirta T,Lin C F,Granger C W J.Power of the Neural Network Linearity Test[J].Journal of Time Series Analysis,1993,14:209-220.
  • 10Rosenstein M T,Collins J J,Luca C J D.A practical method for calculating largest Lyapunov exponents from small data sets[J].Physical D,1993,65:117-134.

二级参考文献22

共引文献21

同被引文献18

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部