期刊文献+

矿山地震活动多重分形特性与地震活动性预测 被引量:20

SEISMIC MULTI-FRACTAL CHARACTERISTICS IN MINES AND SEISMICITY PREDICTION
下载PDF
导出
摘要 矿山地震活动可直接揭示矿山岩体活动状态和危险性水平。利用冬瓜山铜矿矿山地震监测数据,采用广义关联积分计算地震震源空间分布的分形维,利用Gutenberg-Richter关系中的b值与地震事件能量分形维关系计算地震能量分形维,并结合开采活动及矿山结构特征,研究矿山地震活动的分形结构特性和时域谱特征。研究结果表明,矿山地震活动具有多重分形特性,它与开采活动及矿山结构特点之间存在相关性;只有当计算空间区域的地震分形结构较均匀时,其分形维才能有效应用于地震活动性预测。这些空间通常对应于采掘类型少和结构单一的空间区域。地震空间分布分形维D∞反映了矿山地震活动状态,其时域谱具有较好的主震前兆特征,可以作为地震预测的参数;D2-D∞时域谱的地震前兆性较差,较难预测主震。 The characteristics of the fractal of seismicity in mines play an important role in the establishment of a nonlinear dynamics of seismicity in mines for prediction of seismicity.With seismic data detected in Dongguashan Copper mine,the fractal dimensions of spatial distributions of seismic hypocenters were calculated in the generalized correlation integral,and the fractal dimensions of energy of seismic events were calculated in the relation between b-values in the Gutenberg-Richter law.The fractal structures of seismicity in the mine and their temporal spectra were researched by means of multi-fractal theory,combining with the mining activities and mining engineering structures.The results show that seismicity in the mine has multi-fractal,and the heterogeneity of fractal structure of seismicity is of mining activity and engineering structure.Only if the fractal structure of seismicity in a space for fractal calculation is relative homogeneous,its fractal dimensions can be adopted to effectively predict seismicity.This space for the fractal calculation generally has few sorts of mining activities and simplex engineering structure,and the fractal dimensions of spatial distribution of seismic epicenters reflect the state of the induced seismicity.The temporal spectrum D∞ has an obvious precursor of main shock and is suitable for seismicity prediction,but the D2-D∞ has no obvious precursor of main shock and is not suitable for seismicity prediction.
出处 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2010年第9期1818-1824,共7页 Chinese Journal of Rock Mechanics and Engineering
基金 国家重点基础研究发展计划(973)项目(2010CB732004) 国家自然科学基金重大项目(50490274)
关键词 采矿工程 矿山地震 多重分形 非均匀性 相关性 开采活动 地震活动性预测 mining engineering seismicity in mine multi-fractal heterogeneity correlation mining activity seismicity activity prediction
  • 相关文献

参考文献26

  • 1MEMDECKI A J.Seismic monitoring in mines[M].London:Chapman and Hall,1997.
  • 2GIBOWICZ S J,KILKO A.An introduction to mining seismology[M].San Diego,California:Academic Press,Inc.,1994.
  • 3KAGAN Y Y.Seismicity:turbulence of solids[J].Nonlinear Science Today,1992,2(1):1-13.
  • 4KANAMORI H,BRODSKY E E.The physics of earthquakes[J].Reports on Progress in Physics,2004,67(8):1 429-1 496.
  • 5CHELIDZE T,MATCHARASHVILI T.Complexity of seismic process;measuring and applications-a review[J].Tectonophysics,2007,431(1-4):49-60.
  • 6KAGAN Y Y.Observational evidence for earthquakes as a nonlinear dynamic process[J].Physica D:Nonlinear Phenoma,1994,77(1-3):160-192.
  • 7KAGAN Y Y.Short-term properties of earthquake catalogs and models of earthquake source[J].Bulletin of the Seismological Society of America,2004,94(4):1 207-1 228.
  • 8ROY P N S,RAM A.A correlation integral approach to the study of 26 January 2001 Bhuj earthquake,Gujarat,India[J].Journal of Geodynamics,2006,41(4):385-399.
  • 9MATCHARASHVILI T,CHELIDZE T,JAVAKHISHVILI Z,et al.Detecting differences in dynamics of small earthquakes temporal distribution before and after large events[J].Computational Geoscience,2002,28(5):693-700.
  • 10MOLCHAN G,KRONROD T.Seismic interevent time:a spatial scaling and multifractality[J].Pure and Applied Geophysics,2007,164(1):75-96.

二级参考文献16

  • 1鲁振华,张连城.门头沟矿微震的近场监测效能评估[J].地震,1989(5):32-39. 被引量:21
  • 2李庶林,尹贤刚,郑文达,Cezar Trifu.凡口铅锌矿多通道微震监测系统及其应用研究[J].岩石力学与工程学报,2005,24(12):2048-2053. 被引量:193
  • 3Ortlepp W D. RaSiM comes of age-a review of the contribution to the understanding and control of mine rockbursts[A]. In.. Potvin Y,Hudyma M ed. Controlling Seismic Risk[C]. Nedlands: Australian Centre for Geomechanics Press, 2005.3 - 20.
  • 4Mendecki AJ. Seismic Monitoring in Mines[M]. London: Chapman and Hall Press, 1997.
  • 5Kijko A, Sciocatti M. Optimal spatial distribution of seismic stations in mines[J]. Int. J. Rock Mech. and Mining Sci. and Geomechanics Abstracts, 1995, 32(6): 607 - 615.
  • 6Mendecki A J. Real time quantitative seismology in mines[A]. In..Young R P ed. Proceedings of the 3rd International Symposium on Rockburst and Seismicity in Mines[C]. Kingston: A. A. Balkerma,1993.287 - 296.
  • 7Lynch R A, Mendecki A J. High-resolution seismic monitoring in mines[A]. In.. Van Aswegen G, Durrheim R J, Ortlepp W Ded.Rockburst and Seismicity in Mines[C]. Johannesburg: South African Institute of Mining and Metallurgy, 2001. 19 - 24.
  • 8Kijko A. An algorithm for the optimum distribution of a regional seismic network[J]. Pure Appl. Geophys., 1977, 115:999 - 1009.
  • 9Gibowicz S J, Kijko A. An Introduction to Mining Seismology[M].New York: Academic Press, 1994.
  • 10Van Aswegen G, Butler A. Applications of quantitative seismology in SA Gold Mines[A]. In: Young R P ed. Proceedings of the 3rd International Symposium on Rockburst and Seismicity in Mines[C].Kingston: A.A. Balkerma, 1993.261 - 266.

共引文献109

同被引文献245

引证文献20

二级引证文献310

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部