摘要
本文在文献[4]的基础上,研究了L-拓扑空间的局部Nβ-紧性.借助于完全Nβ-紧集和强邻域,定义了L-拓扑空间的局部Nβ-紧性,证明了它是闭可遗传的、有限可乘的、且在连续开满的L值Zadeh型函数下保持不变,说明了它是一种L-好的推广性质.
In this article,based on [4],local Nβ-compactness of L-topological spaces is discussed.Making use of very Nβ-compact sets and strong neighbourhood,the notion of local Nβ-compactness of L-topological spaces is introduced.It is proved that the local Nβ-compactness is inherited by a closed subspace,finitely multiplicative,and invariable under the continuous open surjective Zadeh function,and it is an L-good extension.
出处
《数学杂志》
CSCD
北大核心
2010年第5期931-935,共5页
Journal of Mathematics
基金
山东省自然科学基金资助项目(Y2003A01)