摘要
详细推导了基于双尺度关系的小波积分的矩阵本征值求解方法.并选择常用的Harr小波和CDF小波进行了实际计算,与数值积分的方法进行了比较,结果表明该方法具有良好的精度.同时,还针对光子晶体的特点,对该方法进行了改进,这将有利于进一步提高基于小波理论的光子晶体计算方法的性能.
A detail derivation of an analytical method to calculate the wavelet integration based on the eigenvalue problem is presented.The wavelet method and the numerical method are adopted to compute the integral of wavelet with the Haar wavelet and the Cohen-Daubechies Feauveau(CDF) wavelet.The comparative results show the high precision of the wavelet method.Furthermore,the wavelet method is also improved according to the features of photonic crystals,which will facilitate the performance of the algorithm based on wavelet method.
出处
《华南师范大学学报(自然科学版)》
CAS
北大核心
2010年第3期53-57,共5页
Journal of South China Normal University(Natural Science Edition)
基金
国家自然科学基金资助项目(10504008)
教育部科学技术研究重点项目(209091)
关键词
小波积分
光子晶体
本征值求解
wavelet integration
photonic crystals
eigenvalue problem