期刊文献+

基于小波理论光子晶体能带计算中小波积分的解析求解

ANALYTICAL RESOLUTION OF WAVELET INTEGRATION IN BAND CALCULATION FOR PHOTONIC CRYSTALS BASED ON WAVELET METHOD
下载PDF
导出
摘要 详细推导了基于双尺度关系的小波积分的矩阵本征值求解方法.并选择常用的Harr小波和CDF小波进行了实际计算,与数值积分的方法进行了比较,结果表明该方法具有良好的精度.同时,还针对光子晶体的特点,对该方法进行了改进,这将有利于进一步提高基于小波理论的光子晶体计算方法的性能. A detail derivation of an analytical method to calculate the wavelet integration based on the eigenvalue problem is presented.The wavelet method and the numerical method are adopted to compute the integral of wavelet with the Haar wavelet and the Cohen-Daubechies Feauveau(CDF) wavelet.The comparative results show the high precision of the wavelet method.Furthermore,the wavelet method is also improved according to the features of photonic crystals,which will facilitate the performance of the algorithm based on wavelet method.
出处 《华南师范大学学报(自然科学版)》 CAS 北大核心 2010年第3期53-57,共5页 Journal of South China Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(10504008) 教育部科学技术研究重点项目(209091)
关键词 小波积分 光子晶体 本征值求解 wavelet integration photonic crystals eigenvalue problem
  • 相关文献

参考文献8

  • 1YABLONOVITCH E,GMITTER T J.Inhibited spontaneous emission in solid-state physics and electronics[J].Phys Rev Lett,1987,58,2059.
  • 2JOHN S.Strong localization of photons in certain disordered dielectric superlattices[J].Phys Rev Lett,1987,58,2486.
  • 3SAKODA K.Optical properties of photonic crystals[M].Berlin:Spring-Verlag,2001.
  • 4MALLAT S.A wavelet tour of signal processing (信号处理中的小波导引)[M].杨力华,戴道清,黄文良,等译.北京:机械工业出版社,2002.
  • 5CHECOURY X,LOURTIOZ J M.Wavelet method for computing band diagrams of 2D photonic crystals[J].Opt Commun,2006,259:360-365.
  • 6YAN Z Z,WANG Y Sh.Wavelet-based method for calculating elastic band gaps of two-dimensional photonic crystals[J].Phys Rev B,2006,74:224303.
  • 7DAHMEN W.Wavelet and multiscale methods for operator equations[J].Acta Numerica,1997,6:55.
  • 8BERTOLUZZA S,CANUTO C,URBAN K.On the adaptive computation of integrals of wavelets[J].Appl Numer Math,2000,34:13-38.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部