期刊文献+

Automatic Partition of Chinese Sentence Group 被引量:3

Automatic Partition of Chinese Sentence Group
下载PDF
导出
摘要 Automatic partition of Chinese sentence group is very important to the statistical machine translation system based on discourse. This paper presents an approach to this issue: first, each sentence in a discourse is expressed as a feature vector; second, a special hierarchical clustering algorithm is applied to present a discourse as a sentence group tree. In this paper, local reoccurrence measure is proposed to the selection of key phras and the evaluation of the weight of key phrases. Experimental results show our approach promising. Automatic partition of Chinese sentence group is very important to the statistical machine translation system based on discourse. This paper presents an approach to this issue:first,each sentence in a discourse is expressed as a feature vector; second,a special hierarchical clustering algorithm is applied to present a discourse as a sentence group tree. In this paper,local reoccurrence measure is proposed to the selection of key phrases and the evaluation of the weight of key phrases. Experimental results show our approach promising.
出处 《Journal of Donghua University(English Edition)》 EI CAS 2010年第2期177-180,共4页 东华大学学报(英文版)
基金 National High Technology Research and Development Program of China ( No.2006AA01Z139) Young NaturalScience Foundation of Fujian Province of China ( No.2008F3105) Natural Science Foundation of Fujian Province of China ( No.2006J0043) Fund of Key Research Project of Fujian Province of China (No.2006H0038)
关键词 sentence group automatic partition of sentence group sentence group tree local reoccurrence measure 句子组;句子组的自动分区;判组树;本地出现措施;
  • 相关文献

参考文献12

  • 1张益民,陆汝占,沈李斌.一种混合型的汉语篇章结构自动分析方法[J].软件学报,2000,11(11):1527-1533. 被引量:10
  • 2Debole F,Sebastiani F.Supervised Ter m Weighting for Automated Text Categorization [ C]. Proceedings of the 18th ACM Symposium on Applied Computing . 2003
  • 3Ricardo B Y,Berthier R N.Modern Infor mation Retrieval [ M]. . 2000
  • 4Wu W Z,,Tian X L.Sentence Group [ M]. . 1983
  • 5Wang X.Complex Sentence, Sentence Group and Discourse [ M]. . 1985
  • 6Xue N W,Xia F.The Bracketing Guidelines for the PennChinese Treebank (3rd Version). http:www.ldc .upenn.edu . 2009
  • 7Xia F.The Part-of-Speech Tagging Guidelines for the Penn Chinese Treebank (3rd Version) [ DB/OL]. http:www.ldc .upenn.edu . 2009
  • 8Chen YJ,Shi X D,Zhou C L,et al.Automatic Keyphrase Extraction from Chinese Books [ C]. Proceedings of8th ACIS International Conference on SNPD . 2007
  • 9Jurafsky,JH,Martin,D. Speech and language processing: an introduction to natural language processing, computational linguistics and speech recognition . 2000
  • 10Collins,M.Head-driven statistical models for natural language parsing. Comput. Linguist . 2003

二级参考文献2

  • 1吴立德,大规模中文文本处理,1997年
  • 2王伟,国外语言学,1994年,1卷,4期,8页

共引文献9

同被引文献36

  • 1王跃洪.英语句群分析[J].上海理工大学学报(社会科学版),2004,26(2):30-32. 被引量:6
  • 2罗天妮.论以句群为汉英翻译的有效基本单位[J].东南大学学报(哲学社会科学版),2006,8(3):110-113. 被引量:3
  • 3石晶.文本分割综述[J].计算机工程与应用,2006,42(35):155-159. 被引量:4
  • 4朱靖波,叶娜,罗海涛.基于多元判别分析的文本分割模型[J].软件学报,2007,18(3):555-564. 被引量:15
  • 5吴晨,张全.自然语言处理中句群划分及其判定规则研究[J].计算机工程,2007,33(4):157-159. 被引量:7
  • 6MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed repre- sentations of words and phrases and their compositiouality [ C ]// NIPS 2013: Proceedings of the Advances in Neural Information Pro- cessing Systems 26. Cambridge: MIT Press, 2015:3111 -3119.
  • 7MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimationof word representations in vector space[ C/OL]. [ 2014 - 04 - 20]. http://arxiv, org,/pdtYl301. 3781. pdf.
  • 8MANN W C, THOMPSION S A. Rhetorical structure theory: a the- ory of text organization[J]. Text, 1988, 3(8): 243 -281.
  • 9WEBBER B. D-LTAG: extending lexicalized TAG to discourse[ J]. Cognitive Science, 2004, 28(5): 751-779.
  • 10ASHER N, LASEARIDE. Logics of conversation[ M]. London: Cambridge University Press, 2003 : 6 - 35.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部