摘要
设μ(G,x)表示图G的匹配多项式.对每个图均有唯一的一个匹配多项式,但每一个匹配多项式所对应的图未必唯一.若μ(H,x)=μ(G,x),均有H G,则称图G是匹配唯一的.利用图的匹配多项式及最大实数根的性质证明了树T(1,6,n)及补图匹配唯一的充要条件是n≠6,9,17.
Let μ(G,x) be a matching polynomial of graph G.There must be only one matching polynomial for each graph,but the graph may not be unique for each matching polynomial.A graph G is said to have matching uniqueness if μ(H,x)=μ(G,x) as if implies that H is ismorphic to G.It is proved that T(1,6,n) and its complement can have matching uniqueness if and only if n≠6,9,17 and it is done by making use of the properties of graph's matching polynomial and its maximum real roots.
出处
《甘肃科学学报》
2010年第3期14-17,共4页
Journal of Gansu Sciences
基金
广西自然科学基金项目(桂科自0991265)
广西教育厅科研项目(200911LX402)
河池学院科研项目(2009A-N004
N005
2008QS-N007
N008)
关键词
匹配多项式
匹配等价
匹配唯一
最大实数根
matching polynomial
matching equivalence
matching uniqueness
the maximum real roots