摘要
单位区间I上的区间数系SI在自然序下是一个完全分配格,其上的区间拓扑是连通的紧可度量拓扑,并具有不动点性质.一般地,实数集R上的区间数系SR在自然序下是局部完全分配格,其上的双Scot拓扑是第二可数的局部紧连通可度量拓扑,该拓扑是R上通常序拓扑的自然推广,还是道路连通的.其实,SR这一空间可嵌入到R2中.当考虑代数运算时,SR和SI都是拓扑格。
With a natural order, the interval number system S I on the unit interval is a completely distributive lattice. And it′s a connected compact metrizable topological space under the interval topology. This topological space has the fixed point property. Generally, with a natural order, the interval number system S R on the real number set is a locally completely distributive lattice. And it′s a second countable, connected, locally compact, metrizable topological space under the two sided Scott topology which is a generalization of the usual order topology on R. In fact, S R is also path connected and can be embedded in R 2. When algebraic operations are involved, S R and S I are also topological lattices, and S R is a topological group and a topological ring.
出处
《扬州大学学报(自然科学版)》
CAS
CSCD
1999年第1期1-5,共5页
Journal of Yangzhou University:Natural Science Edition
基金
国家教委留学回国人员基金
关键词
区间数系
内蕴拓扑
度量表示
拓扑结构
区间拓扑
interval number system
locally completely distributive complete lattice
order
intrinsic topology