摘要
设(X,d)为紧致度量空间,f是X上的连续自映射.首先证明了:若f具有周期伪轨跟踪性,则f的链回归集与周期点集的闭包相等,即CR(f)=P(f).然后利用此性质,给出了一个具有伪轨跟踪性但不具有周期伪轨跟踪性的例子.最后给出了伪轨跟踪性蕴含周期伪轨跟踪性的两个充分条件.
Let(X,d) be a compact metric space,and f:X→X be a continuous map.It is proved that if f has the periodic pseudo-orbit-tracing property,then its chain recurrent set of f will be equal to the closure of the periodic point set(i.e.CR(f)=P(f)).An example is given for a map which has the pseudo-orbit-tracing property,but doesn't have the periodic pseudo-orbit-tracing property.In addition,two sufficient conditions are proved for the pseudo-orbit-tracing property to be the periodic pseudo-orbit-tracing properly.
出处
《浙江大学学报(理学版)》
CAS
CSCD
北大核心
2010年第5期505-507,共3页
Journal of Zhejiang University(Science Edition)
基金
国家自然科学基金资助项目(10761002)
关键词
周期伪轨跟踪性
链回归点
ω-极限点
periodic pseudo-orbit-tracing property
chain recurrent point
ω-limit point