期刊文献+

周期伪轨跟踪性与伪轨跟踪性的关系 被引量:9

Relationship between the periodic pseudo-orbit-tracing property and the pseudo-orbit-tracing property.
下载PDF
导出
摘要 设(X,d)为紧致度量空间,f是X上的连续自映射.首先证明了:若f具有周期伪轨跟踪性,则f的链回归集与周期点集的闭包相等,即CR(f)=P(f).然后利用此性质,给出了一个具有伪轨跟踪性但不具有周期伪轨跟踪性的例子.最后给出了伪轨跟踪性蕴含周期伪轨跟踪性的两个充分条件. Let(X,d) be a compact metric space,and f:X→X be a continuous map.It is proved that if f has the periodic pseudo-orbit-tracing property,then its chain recurrent set of f will be equal to the closure of the periodic point set(i.e.CR(f)=P(f)).An example is given for a map which has the pseudo-orbit-tracing property,but doesn't have the periodic pseudo-orbit-tracing property.In addition,two sufficient conditions are proved for the pseudo-orbit-tracing property to be the periodic pseudo-orbit-tracing properly.
作者 赵俊玲 张莉
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2010年第5期505-507,共3页 Journal of Zhejiang University(Science Edition)
基金 国家自然科学基金资助项目(10761002)
关键词 周期伪轨跟踪性 链回归点 ω-极限点 periodic pseudo-orbit-tracing property chain recurrent point ω-limit point
  • 相关文献

参考文献7

  • 1KOSCIELNIAK P.On genericity of shadowing and periodic shadowing property[J].J Math Anal Appl,2005,310:188-196.
  • 2KOSCIELNIAK P,MAZUR M.On C0 genericity of various shadowing properties[J].Discrete Contin Dynam Syst,2005,12:523-530.
  • 3AOKI N.Topological dynamics[C] //Topics in General Topology.Amsterda:North-Holland,1989.
  • 4BLOCK L S,COPPEL W A.Dynamics in One Dimension[M].Berlin:Springer-Verlag,1992.
  • 5KOSCIELNIAK P.Generic properties of Z2-actions on the interval[J] ,Topology Appl,2007,154:2672-2677.
  • 6赵俊玲.极限跟踪的几个性质[J].浙江大学学报(理学版),2005,32(2):135-137. 被引量:1
  • 7OMBACH J.The simplest shadowing[J].Annales Polonici Mathematici,1993,LVIII(3):253-258.

二级参考文献5

  • 1WALTERS P. On the pseudo orbits tracing property and its relationship to stability [A]. The Structure of Attractors in Dynamical Systems [C ]. Berlin:Springer-Verlag, 1978.
  • 2PILYUGIN S Y. Shadowing in dynamical systems[A]. Lecture Notes in Mathematics No 1706 [C].Berlin: Springer-Verlag, 1999.
  • 3AOKI N. Topological dynamics [A]. Topics in General Topology [C]. Amsterda: North-Holland,1989.
  • 4AKIN E. On chain continuity [J]. Discrete and Continuous Dynamical Systems, 1996, 2(1): 111-120.
  • 5赵俊玲.等度连续与POTP[J].高校应用数学学报(A辑),2002,17(2):179-181. 被引量:2

同被引文献34

引证文献9

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部