摘要
讨论了一类具有常数输入且传染率为非线性的SEIS流行病数学模型,给出了决定疾病灭绝和持续生存的基本再生数R0.当R0<1时,无病平衡点全局渐近稳定;当R0>1时,利用第二加性复合矩阵证明了唯一地方病平衡点是全局渐近稳定的.
An epidemic model with constant input and nonlinear incidence rate is investigated,and the basic reproductive number R0 which determines the outcome of the infectious disease is found.The disease-free equilibrium is globally asymptotical stable when R01.Using second additive compound matrix,it is proved that the unique endemic equilibrium is globally asymptotical stable when R01.
出处
《西北师范大学学报(自然科学版)》
CAS
北大核心
2010年第5期6-9,共4页
Journal of Northwest Normal University(Natural Science)
基金
黑龙江省教育厅科学研究项目(11531426)
关键词
SEIS传染病模型
传染率
基本再生数
渐近稳定性
SEIS epidemic model
incidence rate
basic reproductive number
asymptotical stability