期刊文献+

具有非线性传染率的SEIS传染病模型的研究 被引量:5

The research for an SEIS epidemic model with nonlinear incidence rate
下载PDF
导出
摘要 讨论了一类具有常数输入且传染率为非线性的SEIS流行病数学模型,给出了决定疾病灭绝和持续生存的基本再生数R0.当R0<1时,无病平衡点全局渐近稳定;当R0>1时,利用第二加性复合矩阵证明了唯一地方病平衡点是全局渐近稳定的. An epidemic model with constant input and nonlinear incidence rate is investigated,and the basic reproductive number R0 which determines the outcome of the infectious disease is found.The disease-free equilibrium is globally asymptotical stable when R01.Using second additive compound matrix,it is proved that the unique endemic equilibrium is globally asymptotical stable when R01.
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2010年第5期6-9,共4页 Journal of Northwest Normal University(Natural Science)
基金 黑龙江省教育厅科学研究项目(11531426)
关键词 SEIS传染病模型 传染率 基本再生数 渐近稳定性 SEIS epidemic model incidence rate basic reproductive number asymptotical stability
  • 相关文献

参考文献6

  • 1LIU Wei-min, LEVIN S A, LWASA Y. Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models [J]. Math Biosci, 1986, 23(1): 187-204.
  • 2RUAN Shi-gui, WANG Wen-di. Dynamical behavior of an epidemic model with a nonlinear incidence rate[J]. J Differential Equations, 2003, 188: 135-163.
  • 3HETHCOTE H, MA Zhi-en, LIAO Sheng-bing. Effects of quarantine in six endemic models for infectious diseases[J]. Math Biosci, 2002, 180: 141-160.
  • 4徐芳,栗永安,杜明银.具有常数输入的SEIS模型的全局渐近稳定性[J].高校应用数学学报(A辑),2009,24(1):53-57. 被引量:15
  • 5辛京奇,王文娟,张凤琴,王伟.带有非线性传染率的传染病模型[J].高校应用数学学报(A辑),2007,22(4):391-396. 被引量:8
  • 6LI M Y, GTAEF J R, WANG Lian-cheng, et al. Global dynamics of an SEIR epidemic model with a varying total population size [J]. Math Biosci, 1999, 160:191-213.

二级参考文献14

  • 1Liu Weimin, Levin S A, Lwasa Yoh. Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models[J]. Math Biosci, 1986, 23(1): 187-204.
  • 2Ruan Shigui, Wang Weidi. Dynamical behavior of an epidemic model with a nonlinear incidence rate[J]. Differential Equations, 2003, 188: 135-163.
  • 3Hethcote H, Ma Zhien, Liao Shengbing. Effects of quarantine in six endemic models for infectious diseases[J]. Math Biosci, 2002, 180: 141-160.
  • 4Li M Y, Graef J R, Wang Liancheng, et al. Global dynamics of an SEIR epidemic model with a varying total population size [J]. Math Biosci, 1999, 160: 191-213.
  • 5Wang W,Ma Z.Global dynamics of an epidemic model with delay[J].Nonlinear Analysis:Real World Applications, 2002,3:809-834.
  • 6Wang W.Global Behavior of an SEIRS epidemic model time delays[J]. Appl Math Lett, 2002,15:423-428.
  • 7Thieme R H.Persistence under relaxed point-dissipativity (with applications to an endemic model)[J].SIAM J Math Anal,1993,24:407-435.
  • 8Zhang Juan,Ma Zhien.Global dynamics of an SEIR epidemic model with saturating contact rate[J]. Math Biol,2003,185:15-32.
  • 9Liu W M,Hethcote H W,Levin S A. Dynamical behavior of epidemiological model with nonlinear incidence rates[J].J Math Biol,1987,25:359-380.
  • 10Liu W M,Levin S A,Iwasa Y.Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models[J]. J Math Biol, 1986,23:187-204.

共引文献18

同被引文献23

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部