期刊文献+

表面自由基链转移反应制备润湿性可控聚合离子液体薄膜 被引量:3

Preparation of poly(ionic liquid) films with tunable wettability through surface radical chain-transfer reaction
下载PDF
导出
摘要 采用分子自组装技术在羟基化的单晶硅表面制备了3-巯丙基三甲氧基硅烷单分子层,然后以偶氮二异丁腈为引发剂,通过表面自由基链转移反应在基底表面引发了离子液体单体1-烯丙基-3-甲基咪唑氯化物([AMIM]Cl)的原位聚合,通过"直接离子交换"法改变了薄膜表面的对阴离子.用X射线光电子能谱仪(XPS)分析了聚合物薄膜表面典型元素的化学状态,用原子力显微镜(AFM)观察了薄膜的表面形貌,用椭圆偏光仪测量了薄膜的厚度,并用接触角仪对薄膜表面的静态水接触角进行了测量.结果表明,聚合离子液体薄膜成功接枝到了硅片表面,通过对离子的交换实现了薄膜表面润湿性的可控转变. The self-assembled monolayer of 3-mercaptopropyl trimethoxysilane is fabricated on hydroxylated monocrystalline silicon substrates by a molecular self-assembly technique.Then 1-allyl-3-methylimidazolium chloride(Cl) is initiated to polymerize on the silicon substrates in-situ by using azobisisobutyronitrile(AIBN) as initiator through surface radical chain-transfer reaction.The anions in the films are exchanged by "direct anion exchange".The chemical states of some typical elements in the polymer films are analyzed using X-ray photoelectron spectroscopy(XPS),the morphology of the thin films is observed using an atomic force microscope(AFM),and the thicknesses of the films are measured with a spectroscopic ellipsometer.The static water contact angles are determined using static water contact angle goniometer.The results show that the poly(ionic liquid) films are successfully grafted on the silicon substrates.Moreover,controllable wettability of the films can be achieved by exchanging their counteranions.
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2010年第5期50-54,67,共6页 Journal of Northwest Normal University(Natural Science)
基金 国家自然科学基金资助项目(20873101) 甘肃省高等学校基本科研业务费资助项目
关键词 表面引发聚合 自由基链转移反应 聚合离子液体膜 可控润湿性 surface initiated polymerization radical chain transfer reaction poly(ionic liquid) films tunable wettability
  • 相关文献

参考文献20

  • 1马继承,刘欢,冯琳,翟锦,傅强,江雷.氧化锌薄膜的可控浸润性研究[J].分子科学学报,2005,21(4):42-45. 被引量:6
  • 2LU Xiao-ying, TAN Shuai-xia, ZHAO Ning, et al. A unique behavior of water drops induced by low-density polyethylene surface with a sharp wettability transition [J]. Journal of Colloid and Interface Science, 200, 311(2) : 186-193.
  • 3CHENGYT, RODAK D E, WONG C A, etal. Effects of micro- and nano-structures on the self- cleaning behaviour of lotus leaves [ J ]. Nanotechnology, 2006, 17(5): 1359-1362.
  • 4KUIPER S, HENDRIKS B H W. Variable-focus liquid lens for miniature cameras [J]. Applied Physical Letters, 2004, 85: 1128-1130.
  • 5JENNINGS G K, BRANTLEY E L. Physicochemical properties of surface-initiated polymer films in the modification and processing of materials[J]. Advanced Materials , 2004, 16(22) : 1983-1994.
  • 6ZHU Yin, SHI Ming-hui, WU Xue-dong, et al. Amphiphilic copolymer grafted "smart surface" enhanced by surface roughness [J]. Journal of Colloid and Interface Science, 2007, 315 (2): 580-578.
  • 7XU F J, ZHONG S P, YUNG L Y L, etal. Surface-active and stimuli-responsive polymer-Si (100) hybrids from surface-initiated atom transfer radical polymerization for control of cell adhesion [J]. Biomacromolecules, 2004, 5(6) ; 2392-2403.
  • 8刘淑娟,敦惠娟,周峰,赵亮,刘霞,蒋生祥.表面自由基链转移反应制备聚合物修饰的色谱固定相[J].色谱,2002,20(5):432-435. 被引量:5
  • 9周峰,陈淼,刘维民,李斌.表面自由基链转移反应制备超薄聚合物膜[J].化学学报,2002,60(6):1134-1138. 被引量:4
  • 10SUN Ya-bin, DING Xiao-bin, ZHENG Xiao-hui, et al. Surface initiated ATRP in the synthesis of iron oxide/polystyrene core/shell nanoparticles[J]. European Polymer Journal, 2007, 43(3): 762- 772.

二级参考文献27

共引文献125

同被引文献40

  • 1钱柏太,沈自求.控制表面氧化法制备超疏水CuO纳米花膜[J].无机材料学报,2006,21(3):747-752. 被引量:32
  • 2Wei S Y,Shi J Y,Gu J Y, et al. Dynamic wettability of wood surface modied by acidic dyestuff and xing agent[J]. Appl Surf Sci, 2012,258 : 1995-1999.
  • 3Pawlak Z, Urbaniak W, Oloyede A. The relationship between friction and wettabilityin aqueous environ ment[J]. Wear,2011,271 : 1745-1749.
  • 4Jia C X, Chen P,Wang Q. Surface wettability of atmos- pheric dielectric barrier discharge processed Armos bers[J]. Appl Surf Sci, 2011,258 : 388-393.
  • 5Badrea C, Pauporte T, Turmine M, et al. Tailoring the wetting behavior of zinc oxide films by using alkylsi lane selfassembled monolayers[J]. Superlatt Micro- struc, 2007,42 : 99-102.
  • 6Zhang J L, Pu G, Severtson S J. Fabrication of zinc oxide/polydimethylsiloxan composite surfaces demon- strating oibfouling resistant superhydrophobicity[J]. Appl Mater Interf, 2010,2(10) : 2880-2883.
  • 7Wu J, Xia J, Lei W, et al. Superhydrophobic surface based on a coral-like hierarchical structure of ZnO [J]]. Superhydrophobic Surf, 2010,5(12) : 1- 4.
  • 8Piech M, Sounart T L, Liu J. Influence of surface mor- phology on the wettability of microstructured ZnO- based surfaces[J]. J Phys Chem C, 2008, 112,20898- 20405.
  • 9Sakai M,Kono H, Nakajima A, et al. Sliding of water droplets on the superhydrophobic surface with ZnO nanorods[J]. Langmuir, 2009,25 (24) : 14182-14186.
  • 10Tsujii K, Yamamoto T, Onda T, et al. Super oil-repel- lent surfaces[J ]. Angew Chem Int Ed, 1997,36 (9) 1011-1012.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部