期刊文献+

基于欧拉函数秘密分享的RSA私钥的理性分布计算(英文) 被引量:5

Rational Distributed Computation of the RSA Private Key over the Shared Euler Totient Function
下载PDF
导出
摘要 随着分布式计算的发展,分布式计算环境中的安全性问题变得越来越突出。基于RSA算法的分布式认证和分布式数据加密等安全性机制也取得了长足的发展。不过,这些机制中大部分是基于传统密码协议中参与者类型的假设:半诚实或恶意的。本文从假设参与者是理性的这一视角出发,设计了基于RSA欧拉函数秘密分享的RSA私钥的分布式计算协议。协议中所有的参与者均是理性的,他们以自我利益为驱动。所有的参与者均采取遵守协议的执行这一策略形成了纳什均衡,并且该策略是不能严格劣势剔除的。 Along with the distributed computation becoming more and more popular,security mechanisms of the distributed RSA key computation to enhance the strength of distributed authentication and data privacy have been developed quite a lot. However,most of them are the solutions for parties with traditional types like being semi-honest or malicious. We propose a rational approach to dealing with the distributed computation of the RSA private key based on the secret sharing of the Euler totient function over polynomials,in which each player evolved is selfish and motivated to gain interest as mush as possible. The achievement is that it is a Nash equilibrium that each player follows the execution of the prescribed protocol. And the strategy survives the iterated deletion of weakly dominated strategies
出处 《计算机工程与科学》 CSCD 北大核心 2010年第9期11-17,共7页 Computer Engineering & Science
基金 国家自然科学基金资助项目(60970139)
关键词 纳什均衡 私钥 欧拉函数 理性分布计算 严格劣势剔除策略 Nash equilibrium private key Euler totient function rational distributed computation iterated deletion of weakly dominated strategies
  • 相关文献

参考文献20

  • 1Frankel Y,Mackenzie P D,Yung M.Robust Efficient Distributed RSA-Key Generation[C] ∥ Proc of the 30th Annual ACM Symp on Theory of Computing,1998:663-672.
  • 2Lory P.Reducing the Complexity in the Distributed Computation of Private RSA Keys[C] ∥ Proc of Australasian Conf on Information Security and Privacy,2009:250-263.
  • 3Miyazaki S,Sakurai K,Yung M.On Threshold RSA-Signing with No Dealer[C] ∥Proc of the 2nd Int'l Conf on Information Security and Cryptology,1999:197-207.
  • 4Catalano D,Gennaro R,Halevi S.Computing Inverses over a Shared Secret Modulus[C] ∥ Proc of EUROCRYPT'00,2000:190-206.
  • 5Cachin C.Rational Protocols[C] ∥Proc of iNetSec 2009-Workshop on Open Research Problems in Network Security,2009:93-94.
  • 6Halpern J Y.Computer Science and Game Theory:A Brief Survey[EB/OL].[2010-02-05].http:∥www.cs.cornell.edu/home/ halpern/papers/csgt.pdf.
  • 7Halpern J Y,Teague V.Rational Secret Sharing and Multiparty Computation[C] ∥ Proc of the 36th ACM Symp on Theory of Computing,2004:623-632.
  • 8Shoham Y,Tennenholtz M.Non-Cooperative Computation:Boolean Functions with Correctness and Exclusivity[J].Journal of Theoretical Computer Science,2005,343(2):97-113.
  • 9Osborne M J,Rubinstein A.A Course in Game Theory[M].Massachusetts:The MIT Press,2006.
  • 10Gordon S D,Katz J.Rational Secret Sharing,Revisited[C] ∥ Proc of the Fifth Security and Cryptography for Networks,2006:229-241.

同被引文献24

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部