期刊文献+

混沌粒子群算法在电液伺服阀优化设计中的应用 被引量:1

The application of the CPSO in the electro-hydraulic serovalve
下载PDF
导出
摘要 混沌粒子群算法较其它算法具有编程容易、精度高、收敛速度快以及不易陷入局部极值特点,以力反馈两级电液伺服阀为对象,对影响其稳定性及快速性的参数进行优化,在满足伺服阀稳定以及最佳阻尼比的前提下,通过提高伺服阀的固有频率、开环增益来提高伺服阀的频宽,进而提高伺服的稳定性和快速性。结果表明,混沌粒子群算法对伺服阀参数优化后,伺服阀的稳定性和快速性均得到改善。 Compared with the other optimization algorithm,Chaos Particle Swarm Optimization has the character of simple program,high accuracy and convergence,and difficult to get into the local extreme value,it mainly to realize serovalve's best rapid performance through optimized its parameters.Under the condition of insuring its stability and the best damping,in order to improve serovalve's stability performance and the frequency response,the paper tried to increase serovalve's frequency range by improving its natural frequency and open cycle gain.The simulation results shows that the stability performance and the fre-quency response all get improved after optimized the parameters of the serovalve by CPSO.
作者 田婷 贺利乐
出处 《机械设计与制造》 北大核心 2010年第8期74-76,共3页 Machinery Design & Manufacture
基金 西安市科技计划研究项目(YF07050)
关键词 混沌粒子群算法 电液伺服阀 参数优化 CPSO Electro-hydraulic serovalve Parameter optimization
  • 相关文献

参考文献5

  • 1花克勤.电液伺服阀的动态参数寻优[J].机床与液压,2004,32(10):147-149. 被引量:8
  • 2Angeline P J.Evolutionary optimization versus Particle swarm optimization:Phil-osophy and performance differences[C].In:Evolutionary programming Ⅶ,1998:601-610.
  • 3Higasshi N,Iba H.Particle swarm optimi-zation with Gaussian mutation[C].In:Prce.of the Congress on Evolutionary Computation,2003:72-79.
  • 4Van den Bergh F,Engel brecht A P.Acooperative approach to particle swarm optimization.IEEE Transactions on Evolutionary Computation,2004,8(3):225-239.
  • 5李小青,张文祥.混沌粒子群算法及其在优化设计中的应用[J].计算机系统应用,2009,18(4):171-174. 被引量:3

二级参考文献11

  • 1高鹰,谢胜利.混沌粒子群优化算法[J].计算机科学,2004,31(8):13-15. 被引量:104
  • 2Shi Y, Eberharl R. Fuzzy adaptive particle swarm optimization. Proceedings of the 2001 Congress on Evolutionary Computation, 2001:101 - 106.
  • 3Xie XF, Zhang WJ, Yang ZL. Hybrid particle swarm optimizer with mass extinction. IEEE International Conference on Communication, Circuits and Systems and West Sino Expositions, 2002:1170- 1173.
  • 4Van den Bergh F, Engelbrecht A P. A cooperative approach to particle swarm optimization. IEEE Transactions on Evolutionary Computation, 2004,8 (3):225 - 239.
  • 5Kennedy J. Bare bones particle swarms. Proceedings of the IEEE Swarm Intelligence Symposium(SIS 2003), Indianapolis, Indiana, 2003:80- 87.
  • 6Krink T, Vesterstron J S.Particle Swarm Optimization with Spatial Particle Extension. Proc. of the Congress on Evolutionary Computation. Honolulu USA, 2002, 11: 1474- 1479.
  • 7叶元烈.机械优化理论与设计.清华大学出版社,2001.
  • 8范鸣玉,张莹.最优化技术基础.清华大学出版社,1982.
  • 9"Systems Identification" Selected papers on Systems Engineering - volume 2: 200 ~ 253.
  • 10宋俊等.液压元件优化.机械工业出版社,2000.

共引文献9

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部