期刊文献+

一类种内相食捕食系统非常数正解的存在性 被引量:7

Existence of positive solutions for a predator-prey model with predator cannibalism
下载PDF
导出
摘要 运用谱分析、拓扑度理论和分歧理论的方法,在齐次Neumann边界条件下,研究了一类具有种内相食现象的捕食模型非常数正解的存在性。讨论了正常数解的稳定性,给出了正解的先验估计,讨论了非常数正解的存在性,以扩散系数d2为分歧参数,讨论了发自正常数解的分歧。 In this paper,existence of positive steady-state solutions for a predator-prey system with predator cannibalism under Neumann boundary condition is discussed.By means of calculating the indices of fixed points of compact operators in cones, in combination with the maximum principles and spectrum analysis of operators, the suffieiant conditions for nonexistence and existence of positive steady-state solution are obtained.Finally,the bifurcation fRom positive constant solution is considered with diffusion coefficient d2 as bifurcation parameter.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第27期62-65,134,共5页 Computer Engineering and Applications
基金 国家自然科学基金No.10571115 陕西省教育厅基金项目(No.10JK604) 渭南师范学院基金项目(No.10YKF016) 陕西省重点学科~~
关键词 种内相食 指标 分歧 稳定性 cannibalism index bifurcation stability
  • 相关文献

参考文献11

  • 1Meffe G K.Density-dependent cannibalism in the endangered Sonoran topminnow[J].Ann Rev Ecol Syst,1984,12:500-503.
  • 2Elgar M A,Crespi B J.Cannibalism:Ecology and evolution among diverse taxa[M].Oxford:Oxford University Press,1992.
  • 3Sun G Q,Zhang G,Jin Z,et al.Predator cannibalism can give rise to regular spatial pattern in a predator-prey system[J].Nonlinear Dyn,2009.
  • 4Lin C S,Ni W M,Takagi I.Large amplitude stationary solutions to a chemotaxis systems[J].J Differential Equations,1988,72(1):1-27.
  • 5Lou Y,Ni W M.Diffusion,self-diffusion and cross-diffusion[J].J Differential Equations,1996,131(1):79-131.
  • 6Wu J H.Global bifurcation of coexistence state for the competition model in the chemostat[J].Nonlinaar Analysis,2000,39:817-835.
  • 7Wang M X.Stationary patterns for a prey-predator model with prey-dependent and ratio-dependent functional responses and diffusion[J].Phys D,2004,196:172-192.
  • 8Hei L J,Yu Y.Non-constant positive steady state of one resource and two consumers model with diffusion[J].J Math Anal Appl,2008,339:566-581.
  • 9Smoller J.Shock waves and reaction-diffusion equations[M].2nd ed.New York:Springer-Verlag,1994.
  • 10Peng R,Wang M X.Uniqueness and stability of steady-states for a predator-prey model in heterogeneous environment[J].Proceedings of the American Mathematical Society,2008,136:859-865.

同被引文献55

  • 1沈渭泉.种内关系和种间关系实例[J].生物学通报,1993,28(4):18-19. 被引量:1
  • 2张树文,陈兰荪.具有脉冲效应和综合害虫控制的捕食系统[J].系统科学与数学,2005,25(3):264-275. 被引量:30
  • 3游世明,陈思忠,梁贺明.基于ADAMS的并联机器人运动学和动力学仿真[J].计算机仿真,2005,22(8):181-185. 被引量:31
  • 4张锦炎.常微分方程几何理论与分支问题[M].北京:北京大学出版社,1980..
  • 5Huo Haifeng, Li Wantong.Periodic solution of a delayed predatorprey system with Michaelis-Menten type functional response[J]. Journal of Computational and Applied Mathematics, 2004, 166: 453-463.
  • 6Zhuang Kejun, Wen Zhaohui.Dynamics of a discrete three species food chain system[J].International Journal of Computational and Mathematical Sciences, 2011,5 ( 1 ) : 13-15.
  • 7Wang Fengyan, Pang Guoping.Chaos and Hopf bifurcation of a hybrid ratio-dependent three species food chain[J].Chaos, Solitons and Fractals, 2008,36: 1366-1376.
  • 8Li Jingwen,Wang Genqiang.Sharp inequalities for periodic functions[J].Applied Math E-Notes,2005,5:75-83.
  • 9Gaines R E,Mawhin J L.Coincidence degree and nonlinear differential equations[M].Berlin: Springer-Verlag, 1977.
  • 10昊春光.一类捕食者一食饵种群动力学模型及数值模拟[D].北京:中央民族大学理学院,2009.

引证文献7

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部