期刊文献+

基于动态权值集成的手写数字识别方法 被引量:7

Handwritten numeral recognition based on dynamic weichted multi-classifier integration
下载PDF
导出
摘要 提出了一种基于动态权值集成的多分类器手写数字识别方法。该方法采用BP神经网络的方法,对不同的特征输入向量构建不同的神经网络分类器,通过设定动态权值,进而对不同的分类器的输出向量采用多类器集成方法进行系统集成。实验结果表明该方法具有较高的识别率和识别精度。 A dynamic weight multi-classifier integration handwritten numeral recognition method is presented.This method adopts BP neural network method, sets different neural network classifiers' vectors for different input vectors.By setting the right dynamic value, it proceeds system integration for output vectors based on dynamic weight multi-classifier integration. The experimental result indicates this system has high classification rate and the higher precision.
作者 杜敏 赵全友
出处 《计算机工程与应用》 CSCD 北大核心 2010年第27期182-184,共3页 Computer Engineering and Applications
关键词 手写数字识别 BP神经网络 动态权值集成 handwritten numeral recognition BP neural network dynamic weighted multi-classifier integration
  • 相关文献

参考文献11

  • 1Frader P D,Khabou M A.Automatic feature generation for handwritten digit recognition[J].IEEE Trans on Pattern Recognition and Machine Intelligence,1996,18(12):1256-1261.
  • 2Lee S W.Offline recognition of to tally unconstrained handwritten numerals using multi-layer cluster neural network[J].IEEE Trans on Pattern Recognition and Machine Intelligence,1996,18(6):648-652.
  • 3娄震,胡钟山,杨静宇,刘克,孙靖夷.基于轮廓分段特征的手写体阿拉伯数字识别[J].计算机学报,1999,22(10):1065-1073. 被引量:34
  • 4Mai T,Suen C Y.A generalized knowledge based system for the recognition of unconstrained handwritten numerals[J].IEEE Trans on Syst,Man and Cybem,1990,SMC220(7):835-848.
  • 5Park J,Govindaraju V.Active character recognition using "A*-like" algorithm[C]//Proceedings of IEEE Internatiunal Conference on Computer Vision and Pattern Recognitiun,Hilton Hcad,June,2000:1-6.
  • 6Zhou Jie.Recognition and verification of unconstrained handwritten numerals[D].Canada:The University of Concordia,1999.
  • 7Cheng R,Gen M,Tsujimura Y.A tutoiral survey of job shop scheduling problems using genetic algnirthms representatiort[J].Computers & Indsutrial Egnineeirng,1996,30(4):983-997.
  • 8Vapnik V.The nature of statistical learning theory[M].[S.l.]:Springer Verlag,1995.
  • 9Chen Rongching,Hsieh Chunghsun.Web page classification based on a support vector machine using a weighted vote schema[J].Expert Systems with Applications,2006,31 (2):427-435.
  • 10张猛,余仲秋,姚绍文.手写体数字识别中图像预处理的研究[J].微计算机信息,2006(06S):256-258. 被引量:30

二级参考文献19

  • 1张冬霞.基于ANN和HMM的联机手写体汉字识别系统[J].微计算机信息,2005,21(08X):144-146. 被引量:8
  • 2Lee Seong Whan,IEEE Trans Pattern Anal Machine Intell,1996年,18卷,6期,648页
  • 3Liao Simon,IEEE Trans Pattern Anal Machine Intell,1996年,18卷,3期,254页
  • 4Trier Oivind,Pattern Recognition,1996年,29卷,4期,641页
  • 5Mor Shunjl,IEEE Proc,1992年,80卷,7期,1029页
  • 6Cheng D,Pattern Recognition,1998年,31卷,3期,235页
  • 7Hu J,Pattern Recognition,1998年,31卷,5期,493页
  • 8Zhou J,Proc 4th ICDAR Ulm Germany,1997年,294页
  • 9Impedovo S,Automatic Bankcheck Processing,1997年
  • 10Lee S W,IEEE Trans Pattern Recognition Machine Intelligence,1996年,18卷,6期,648页

共引文献92

同被引文献32

  • 1黄弋石,梁艳.手写识别建模数学方法研究[J].软件,2013,34(8):13-15. 被引量:10
  • 2乔玉龙,潘正祥,孙圣和.一种改进的快速k-近邻分类算法[J].电子学报,2005,33(6):1146-1149. 被引量:25
  • 3Alkhateeb J H, Khelifi F, Jiang J, et al. A new approach for off- line handwritten Arabic word recognition using KNN classifier[ C ].//Signal and Image Processing Appli- cations (ICSIPA), 2009 IEEE International Conference on. IEEE ,2009 : 191 - 194.
  • 4Lee Y. Handwrilten digit recognition using k nearest - neighbor, radial- basis function, and back propagation neural networks [ J ]. Neural computation, 1991,3 ( 3 ) : 440 - 449.
  • 5Gorgevik D,Cakmakov D. Handwritten digit recognition by combining SVM classifiers [ C ].//Computer as a Tool, 2005. EUROCON 2005. The International Conference on. IEEE ,2005,2 : 1393 - 1396.
  • 6Dolenko B K,Card H C. Handwritten digit feature extrac- tion and classification using neural networks[ C ].//Elec- trical and Computer Engineering, 1993. Canadian Conler- ence on. IEEE, 1993:88 - 91.
  • 7Hinton G E, Osindero S, Teh Y W. A fast learningalgorithm for deep belief nets [J]. Neural computation, 2006,18 (7) : 1527 - 1554.
  • 8Baldi P. Auleneoders, Unsupervised Learning, and Deep Architectures [ J ]. Journal of Machine Learning Research - Proeeedings Track ,2012,27:37 - 50.
  • 9Gliige S, B? ck R,Wendemuth A. Auto - Encoder Pre - Training of Segmented - Memory Recurrent Nem'al Networks[J].//Proceedings of the 21st European Sympo- sium on Artificial Neural Networks,Computational Inlelli- genee and Machine Learning ( ESANN 2013 ). Bruges (Belgium). April 24 - 26,2013:29 - 34.
  • 10Larochelle H, Erhan D, Vincent P, Deep learning using robust interdependent codes [ C].//International Confer- ence on Artificial Intelligence and Statistics. 2009: 312 -319.

引证文献7

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部