期刊文献+

结合Isomap与K均值聚类算法的交通时段划分研究

Study of TOD based on Isomap and K-means clustering algorithm
下载PDF
导出
摘要 为避免在城市交通多时段定时控制中人工时段划分方法所带来的主观性、片面性,以提高工作效率,结合流形学习算法中的等距映射算法和K均值聚类算法,提出了一种时段划分新方法。给出一组实测数据,假设它是一个存在于高维数据空间中的低维流形;利用等距映射算法,找出它的内在维数,将数据约简;根据约简后的样本点分布情况,利用K均值聚类算法聚类,划分交通时段。实验结果表明,此方法划分交通时段准确高效,并有效地避免了人工划分方法的主观性。 In the time of day control schemes,the basic problem is to program the traffic intervals rationally.But,as the traditional main means to fix the lengths of intervals, the artificial method has subjectivity and one-sidedness.To avoid the shortcomings, this paper puts forward a new method to fix the lengths of intervals.Based on the concepts of manifold and manifold learning algorithm, it raises an estimation method which can discover the intrinsic dimensions of the flow data in isolated intersection.Firstly, the paper supposes the measured data that has its lower-dimensional manifold embedded in the high-dimension manifold;with Isomap algorithm, it finds out the intrinsic dimensions;finally using the reduced sample data,it clusters them with K-means algorithm and gets corresponding traffic intervals.The results indicate that the Isomap and K-means algorithm based clustering method outperforms the traditional artificial method as well as the other methods in the traffic signal periods division of day.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第27期234-237,共4页 Computer Engineering and Applications
基金 广东省自然科学基金No.8152902001000014 No.06029813 广东省教育厅高校自然科学研究重点项目No.05Z025~~
关键词 城市交通 交通信号时段划分 流形学习算法 K均值聚类 信号控制 urban traffic traffic intervals programming manifold learning algorithm K-means clustering algorithm traffic signal control
  • 相关文献

参考文献11

  • 1Hauser T A,Scherer W T.Data mining tools for real-time traffic signal decision support and maintenance[C]//2001 IEEE Intemational Conference on Systems,Man,and Cybernetics,Tucson A Z USA,Oct 2001.USA:IEEE Press,2001,3:1471-1477.
  • 2Park B,Lee D H,Yun I.Enhancement of time of day hased traffic signal control[C]//2003 IEEE International Conference on Systems,Man,and Cybernetics,Oct 2003.USA:IEEE Press,2003,4:3619-3624.
  • 3杨立才,贾磊,孔庆杰,朱文兴.基于人工免疫算法的交通时段自动划分方法[J].控制理论与应用,2006,23(2):193-198. 被引量:21
  • 4黄启宏,刘钊.流形学习中非线性维数约简方法概述[J].计算机应用研究,2007,24(11):19-25. 被引量:24
  • 5Tenenbaum J B,Silva V,Langford J C.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290(5500):2319-2323.
  • 6Borg I,Groenen P.Modern multidimensional scaling:theory and application[M].New York:Springer-Verlag,1997.
  • 7Bernstein M,Silva V,Langford J C,et al.Graph approximations to geodesics on embedded manifolds[R].Department of Psychology,Stanford University,2000.
  • 8[德]道路与交通工程研究学会.交通信号控制指南-德国现行规范(RiLSA)[M].北京:中国建筑工业出版社,2006.
  • 9袁远,季星来,孙之荣,李衍达.Isomap在基因表达谱数据聚类分析中的应用[J].清华大学学报(自然科学版),2004,44(9):1286-1289. 被引量:11
  • 10周红,吴炜,滕奇志,杨晓敏,李旻,陶德元.流形学习中的算法研究[J].计算机应用研究,2007,24(7):214-217. 被引量:9

二级参考文献115

共引文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部