期刊文献+

K分布杂波中距离扩展目标的Wald检测 被引量:4

Wald test of range-distributed targets in K-distributed clutter
下载PDF
导出
摘要 将距离扩展目标建模为子空间信号,用球不变模型模拟K分布杂波,提出了广义Wald检测算法。该算法是对待检测距离单元进行非相参积累,对杂波的纹理分量而言具有CFAR特性。首先对各个待检测距离单元分别检测,其输出的统计量是"白化"后的信号向信号子空间投影的能量和其向与信号子空间正交的噪声子空间投影的能量的比值来计算的,然后将各个待检测距离单元输出的统计量进行累加,形成最终的检验统计量。为了验证其有效性,通过Monte Carlo仿真了该算法的检测性能,并与文献[5]提出的自适应Wald检测器进行比较。 The generalized Wald test algorithm is derived to implement range-distributed targets detection embedded in K-distributed clutter which is modeled as a spherically invariant random process (SIRP). The range-distributed target is modeled as a subspace random signal. The algorithm performs an incoherent processing over all the cells under test and is shown that it ensures CFAR property with respect to the unknown statistics of the clutter texture component. First of all, every cell under test is computed by the ratio of the energy of the whitened data that lies in the transformed signal subspace to the energy of it that lies in the orthogonal subspace, the so-called noise subspace. And then, the final decision statistics is the summation of the ratio in every cell under test. Performances of the proposed detector are assessed by means of Monte Carlo simulation strategy. In particular, the simulation results highlight that the proposed detector has better detection performances compared with adaptive Wald receiver which was proposed in [ 5 ].
出处 《信号处理》 CSCD 北大核心 2010年第9期1349-1354,共6页 Journal of Signal Processing
基金 教育部新世纪优秀人才支持计划资助(NCET-05-0912) 国家自然科学基金资助(60672140 60802088)
关键词 K分布 WALD检验 距离扩展目标 子空间检测 K-distributed Wald test range-distributed target subspace detection
  • 相关文献

参考文献11

  • 1E.Conte,A.De Maio,G.Ricci.CFAR detection of distributed targets in non-Ganssian disturbance[J].IEEE Transactions on Aerospace and Electronic Systems,2002,38(2):612-621.
  • 2K.Gerlach,M.J.Steiner,F.C.Lin.Detection of a spatially distributed target in white noise[J].IEEE Signal Processing Letters,1997,4(7):198-200.
  • 3K.Gerlach.Spatially distributed targets detection in non-Gaussian Clutter[J].IEEE Transactions on Aerospace and Electronic Systems,1999,35(3):926-934.
  • 4E.Conte,A.De Maio,G.Ricci.GLRT-based adaptive detection algorithms for range-spread targets[J].IEEE Transactions on Signal Processing,2001,49(7):1336-1348.
  • 5E.Conte,A.De Maio.Distributed target detection in compound-Gaussian noise with Rao and Wald tests[J].IEEE Transactions on Aerospace and Electronic Systems,2003,39(2):568-582.
  • 6F.Bandiera,A.De Maio A.S.Greco et al.Adaptive radar detection of distributed targets in homogeneous and partially homogeneous noise plus subspace interference[J].IEEE Transactions on Signal Processing,2007,55(4):1223-1237.
  • 7A.De Maio,A.Farina,K.Gerlach.Adaptive detection of range spread targets with orthognnal rejection[J].IEEE Transactions on Aerospace and Electronic Systems,2007,43(2):738-752.
  • 8陈远征,范红旗,付强.复合高斯杂波下距离扩展目标的OM-GLRT[J].信号处理,2008,24(5):718-721. 被引量:6
  • 9Jian Guan,Yanfei Zhang,Yong Huang.Adaptive subspace detection of range-distributed target in compound-Gaussian clutter[J].(Elsevier)Digital Signal Processing,2009,19:66-78.
  • 10F.C.Robey,D.R.Fuhrmann,Nitzberg et al.A CFAR adaptive matched filter detector[J].IEEE Transactions on Aerospace and Electronic Systems,1992,28(1):208-216.

二级参考文献9

  • 1E. Conte and A. DE Maio. Distributed target detection in compound-Gaussian noise with Rao and Wald Tests. IEEE Trans. on Aerospace and Electronic Systems, vol. 39, no. 2 ,pp. 568-581 ,April 2003.
  • 2E. Conte, A. DE Maio and G. Ricci. GLRT-based adaptive detection algorithms for range-spread targets. IEEE Trans. on signal processing, vol. 49, no. 7, pp. 1336-1348, July 2001.
  • 3G. Alfano, A. De Maio and A. Farina. Model-based adaptive detection of range-spread targets, lEE proc. -radar sonar navig. ,vol. 151 ,no. 1 ,Feb. 2004.
  • 4A. De Maio. Robust adaptive radar detection in the presence of steering vector mismatches. IEEE Trans. on Aerospace and Electronic Systems, vol. 41, no. 4, Oct. 2005.
  • 5E. Conte and M. Longo. Characterisation of radar clutter as a spherically invariant random process. IEE. Proc. , vol. 134 ,Part F,no. 2 ,pp. 191-197,1987.
  • 6E. Conte and A. DE Maio. CFAR detection of distributed targets in non-Gaussian disturbance. IEEE Trans. on Aerospace and Electronic Systems, vol. 38, no. 2, pp. 612-621, April 2002.
  • 7Kay, S. M. Fundamentals of Statistical Signal Processing: Detection Theory Vol. Ⅱ. Englewood Cliffs, N J- Prentice- Hall, 1995.
  • 8S. Watts and K. D. Ward. Spatial correlation in K-distributed sea clutter. IEE Proceedings, 134, Pt. F, 6, pp. 526- 532, Oct. 1987.
  • 9宋海娜,胡卫东,郁文贤,吴建辉.低入射余角下雷达海杂波的建模与仿真[J].国防科技大学学报,2000,22(3):29-33. 被引量:17

共引文献7

同被引文献34

  • 1杨俊岭,吕韶昱,万建伟.一种新的相干k分布模型及其在海杂波仿真中的应用[J].系统仿真学报,2007,19(2):250-253. 被引量:23
  • 2ht tp://soma.ece.mcmaster.ca/ipix[EB/OL].
  • 3SCHIMPF H.,FUCHS H.H..Properties of polarimetric sea clutter at 35 GHz[C].IEEE radar conference,2007:4152-4155.
  • 4LI X.F.XU X.J.A statistical model for correlated K-distributed sea clutter[C].Congress on Image and Signal Processing,2008:408-412.
  • 5LANCE M.K..Improved SAR target detection via extended fractal features[J].IEEE Trans.AES,2001,37(2):436-450.
  • 6HAYKIN S..Adaptive radar signal processing[J].John Wiley & Sors,New York,2007,Chapter 3.
  • 7HUANG E.,SHEN Z.,LONG R.,etc.the empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[M].Proc.R.Soc.Lond.A,1998:903-995.
  • 8E. Conte,A. De Maio, and G. Ricci, CFAR Detection of Distributed Targets in Non-Gaussian Disturbance [ J ], IEEE Transactions on Aerospace and Electronic Systems, 2002,38 (2) ,612-621.
  • 9E. Cont, A. De Maio, Distributed Target Detection in Compound-Gaussian Noise with Rao and Wald Tests [ J ], IEEE Transactions on Aerospace and Electronic Systems, 2003,39 (2) ,568-582.
  • 10Xiaofei Shuai and lJngjiang Kong and Jianyu Yang, Per- formance analysis of GLRT-based adaptive detector for distributed targets in compound-Gaussian clutter[ J]. Sig- nal Processing,2010,90( 1 ) :16-23.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部