期刊文献+

一种基于CAF的频谱混叠多信号检测算法 被引量:2

A Detecting Algorithm Based on CAF for Overlapping Frequency-Spectrum Multi-Signals
下载PDF
导出
摘要 针对多源同频混叠信号检测问题,本文提出了一种基于互模糊函数(Cross Ambiguity Function,CAF)的空间域信号检测算法。该算法首先在二维时延-频移搜索范围内计算多信号情况下的CAF值数组,将频谱混叠的多信号映射在空间域上,然后在分析多信号CAF峰特征的基础上,借鉴图像分割中区域增长法的思想,将CAF峰逐一识别、分割,及迭代循环,以实现多信号的检测。本文采用所提出的算法对同频多信号进行了仿真,给出了在不同信噪比下和不同信号功率比下的多信号检测概率,以及不同门限因子对检测概率和虚警概率的影响。仿真结果表明,该算法能够在低信噪比条件下,有效地对具有一定功率差别的同频多信号进行检测。 For multi-signals detection of overlapping frequency-spectrum from different sources, a space-field detection algorithm is proposed in this paper based on Cross Ambiguity Function (CAF). Firstly, multi-signals are mapped to space-field through array of the signals' CAF calculated in the two dimension searching area of time-delay and frequency-shift. Then, considering the characters of the muhi-signals-CAF lobes and drawing from the idea of region-growing method in image segmentation, the signals are detected with iterative circulations by recognizing and segmenting the CAF lobes in accord with the signals one by one. Simulation is carried out to multi-signals with same frequency by the proposed algorithm. The detection probability curves under different Signal Noise Ratios and different Signal Power Ratios are presented. Likewise, the influence by different threshold coefficients to the detection probability and the fault alarm probability is given. The simulation results indicate that the algorithm may effectively detect different power multi-signals of overlapping frequency-spectrum under low SNR.
出处 《信号处理》 CSCD 北大核心 2010年第9期1434-1438,共5页 Journal of Signal Processing
关键词 CAF 多信号检测 图像分割 CAF Multi-Signals Detection Image Segmentation
  • 相关文献

参考文献3

二级参考文献9

  • 1Marr D 姚国正等(译).视觉计算理论[M].科学出版社,1988..
  • 2罗希平.生物信息处理:对自动指纹识别和医学图像分割的研究,博士论文[M].中国科学院自动化研究所人工智能实验室,2000..
  • 3田捷.实用图像处理技术[M].北京:电子工业出版社,1994..
  • 4MICHALEWICZ Z. Genetic Algorithms + Data Structures = Evolution Programs [M]. Berlin, Heidelberg, New York: Springer-Verlag, 1994.
  • 5WANG Xiufeng, ELBULUK M E. The application of genetic algorithm with neural networks to the induction machines modeling [J].System Analysis Modeling Simulation, 1998,31:93- 105.
  • 6HOLLAND J H. Adaptation in Natural and Artificial System: An Introduction Analysis with Applications to Biology, Control and Artificial Intelligence [M]. Michigan, USA: The University of Michigan Press, 1975.
  • 7GOLDBERG D E, RICHARDSON J. Genetic algorithms with sharing for multimodel function optimization [C]//Proc of the Second lnt Confon Genetic Algorithms: July 28 - 31, 1987 at the Massachusetts Institute of Technology. Massachusetts, USA: The Massachusetts Institute of Technology Press, 1987:41 -49.
  • 8WILLIAM M. Spears, simple subpopulation schemes [C]//Proc of the Third Annual Conference on Evolutionary Programming, Feb. 24- 26, 1994 at San Diego, California, USA. Singapore: World Scientific, 1994:296 - 307.
  • 9刘洪杰.[D].天津:南开大学,2002.

共引文献146

同被引文献2

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部