期刊文献+

基于最小二乘模糊单类支持向量机的网络故障检测

Network fault detection based on fuzzy one class SVM with least squares and equality constraints
下载PDF
导出
摘要 针对基于单类支持向量机的网络故障异常检测存在的训练速度慢和检测精度低等问题,提出一种最小二乘模糊单类支持向量机(LSFOC-SVM)。该方法采用最小二乘损失函数和等式化约束改进标准单类支持向量机的训练算法,将二次规划转化为解线性方程组,降低了计算代价;并通过构造基于特征空间距离的模糊隶属度函数和优化选择告警阈值,适当扩大了故障预警范围,提高了故障检测率。与同类方法相比,该方法在保证检测效果的同时大幅度地提升了训练效率。应用测试结果表明该方法是可行的。 A new classifier named Least Squares Fuzzy One Class Support Vector Machine (LSFOC-SVM) was proposed to enhance the efficiency and effect of one class support vector machine applied to network fault abnormal detection. The proposed LSFOC-SVM not only reduced the high computational cost by training with the least squares and equality constraint which obtain a set of linear equations instead of quadratic programming, but also enhanced the fault detection rate by extending the fault alarm area properly with fuzzy membership based on distance in feature space and appropriate alarm threshold. The comparative study results indicate LSFOC-SVM can improve the training efficiency greatly without affecting the diagnosis accuracy. And application tests verify the feasibility of this method.
出处 《计算机应用》 CSCD 北大核心 2010年第10期2834-2837,共4页 journal of Computer Applications
基金 陕西省自然科学基金资助项目(SJ08F14) 空军工程大学电讯工程学院研究生创新基金项目
关键词 网络故障检测 支持向量机 单类分类 最小二乘 模糊隶属度 network fault detection Support Vector Machine (SVM) one class classification least squares fuzzy membership
  • 相关文献

参考文献10

  • 1HAJJI H. Statistical analysis of network traffic for adaptive faults detection [ J]. IEEE Transactions on Neural Network, 2005, 16(5): 1053 - 1063.
  • 2HABIB T, INGLADA J, MERCIER G, et al. Support vector reduction in SVM algorithm for abrupt change detection in remote sensing [ J]. IEEE Geoscience and Remote Sensing letters, 2009, 6 (3): 606 -610.
  • 3李千目,许满武,张宏,刘凤玉.基于支持向量基的网络应用层故障检测系统[J].系统仿真学报,2006,18(7):1806-1809. 被引量:15
  • 4ZHANG LI, MENG XIANG-RU, ZHOU HUA. Network fault diagnosis using hierarchical SVMs based on kernel method [ C]//2009 Second International Workshop on Knowledge Discovery and Data Mining. Washington, DC: IEEE Computer Society, 2009: 753- 756.
  • 5SCHOLKOPF B, PLATY J C, SHAWE-TAYLOR J, et al. Estimating the support of a high-dimension distribution [ J]. Neural Computation, 2001, 7(13) : 1443 - 1471.
  • 6张新峰,刘垚巍.广义超球面SVM研究[J].计算机研究与发展,2008,45(11):1807-1816. 被引量:3
  • 7SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers [ J]. Neural Processing Letters, 1999, 9(3): 293 - 300.
  • 8University of California Irvine. UCI KDD Archive [ DB/OL]. [ 2009 - 12 - 16]. http://kdd, ics. uci. edu/.
  • 9ZHANG LI, MENG XIANG-RU, WU WEI-JIA, et al. Network fault feature selection based on adaptive immune clonal selection algorithm [ C]//CSO 2009: International Joint Conference on Computation Sciences and Optimization. Washington, DC: IEEE, 2009, 2: 969- 973.
  • 10PIETRASZEK T. On the use of roc analysis for the optimization of abstaining classifiers [ J]. Machine Learning, 2007, 68(2): 137 - 169.

二级参考文献15

  • 1李千目,戚湧,张宏,刘凤玉.基于粗糙集神经网络的网络故障诊断新方法[J].计算机研究与发展,2004,41(10):1696-1702. 被引量:28
  • 2李千目,游静,张宏,刘凤玉.一种数据链用户保障策略研究与设计[J].北京航空航天大学学报,2004,30(11):1029-1032. 被引量:9
  • 3Zhang Xinfeng Shen Lansun.A NEW HYPERSPHERE SUPPORT VECTOR MACHINE ALGORITHM[J].Journal of Electronics(China),2006,23(4):614-617. 被引量:2
  • 4Tax D M J, Duin R P W. Support vector domain description [J]. Pattern Recognition Letters, 1999, 20(11/13): 1191- 1199
  • 5Tax D M J, Duin R P W. Support vector domain description [J]. Machine Learning, 2004, 54(1): 45-66
  • 6Xin Dong, Wu Zhaohui, Pan Yunhe. A new multi-class support vector machines [C] //Proc of IEEE Int Conf on Systems, Man, and Cybernetics. Piscataway, NJ: IEEE, 2001:1673-1676
  • 7Hoi Chu-Hong, Chan Chi-Hang, Huang Kaizhu, et al. Biased support vector machine for relevance feedback in image retrieval [C]//Proe of IEEE Int Joint Conf on Neural Networks. Piseataway, NJ: IEEE, 2004: 3189-3194
  • 8Yi Liu, Zheng Y F. Minimum enclosing and maximum excluding machine for pattern description and discrimination pattern recognition [C]//Proc of the 18th Int Con[ on ICPR. Los Alamitos: IEEE Computer Society, 2006 : 129-132
  • 9薛嘉庆.最优化理论与方法[M].修订版.北京:冶金工业出版社,2003
  • 10D Gavalas,D Greenwood,M Ghanbari.Advanced network monitoring applications based on mobile/intelligent agent technology[J].Computer Communications(S1548-7709),2002,8(23):720-730.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部