期刊文献+

基于LS_SVM的下行波束盲校正算法

Blind Calibration Algorithm for Down Wave-beam Based on Least Squares Support Vector Machine
原文传递
导出
摘要 在智能天线系统中,由于各阵元之间存在着耦合和激励误差,在对下行波束进行赋形时,这些误差会使产生波束指向严重偏离期望的方向,造成天线增益下降。针对这一问题,提出了一种基于最小二乘支持矢量机(LS_SVM)的下行波束盲校正算法:该算法首先利用发射的训练序列对支持矢量机(SVM)进行训练,然后利用所得的权值补偿耦合和激励误差,使发射波束的指向符合期望的方向,最后采用自适应波束综合算法产生主波束宽度以及副瓣电平符合期望值的方向图。对该方法进行了仿真验证,仿真结果表明,该算法简单易行,具有实时处理的能力。 The electromagnetic field coupling and exciting errors existed in these antenna-array elements of the intelligent antenna system would result in serious direction errors of down-wave-beam between the in-factdirection and desired direction and in the decline of antenna gain when the down wave-beam is shaped.For resolvingthese problems,a novel blind calibration algorithm for down wave-beam based on LS-SVM (least squares supportvector machine) is proposed.The antenna array first transmits a serial train sequence to train the LS-SVM,andthus the desired weight value and coefficients are obtained,those weight value and coefficients are used tocompensate these array errors and make the transmitting direction in conformity with the desired direction.Finallythe adaptive pattern synthesis algorithm is adopted to produce a certain-width main beam and lower-level sidebeam.The proposed algorithm is simulated with Matlab simulink software,and the simulation result shows thatthe LS-SVM-based algorithm is simple and feasible,and is of the real-time processing ability.
出处 《通信技术》 2010年第9期21-24,共4页 Communications Technology
关键词 最小二乘支持向量机 下行波束盲校正 自适应波束综合算法 实时处理 LS-SVM (least squares support vector machine) blind Calibration For Down Beam adaptive pattern synthesis real-time processing
  • 相关文献

参考文献10

二级参考文献20

  • 1王理德,陈高平.扩频通信技术在CDMA中的应用[J].通信技术,2003,36(7):56-58. 被引量:9
  • 2田玉刚,王新洲,花向红.非线性最小二乘估计的遗传算法[J].测绘工程,2004,13(4):6-8. 被引量:10
  • 3高飞,童恒庆.基于改进粒子群优化的非线性最小二乘估计[J].系统工程与电子技术,2006,28(5):775-778. 被引量:14
  • 4Hansen E R,Walster W G.Global Optimization Using Interval Analysis[M].New York:CRC,2003.
  • 5Tapamo,H.Some New Acceleration Mechanisms in Verified Global Optimization[D].Wuppertal:Wuppertal University,2005.
  • 6MartInez J A,Casado L G,Garcia I,et al.On An Efficient Use of Gradient Information for Accelerat ing Interval Global Optimization Algorithms[J].Numerical Algorithms,2004(37):61-69.
  • 7Nataraj P S V,Kotecha K.An Improved Interval Global Opti-mization Algori thm Using Higher-order Inclusion Function Forms[J].Journal of Global Optimi zation,2005(32):35-63.
  • 8张晓伟,刘三阳.一种新的区间-遗传算法[J].电子学报,2007,35(8):1567-1571. 被引量:7
  • 9VAPNIKVN 张学工译.统计学习理论的本质[M].清华大学出版社,2000..
  • 10SUYKENS J A K,VANDEWALLE J.Least squares support vector machine classifiers[J].Neural Processing Letter,1999,9(3):293~300.

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部