期刊文献+

Contourlet变换和Tsallis熵的多源遥感图像匹配 被引量:5

Multi-source remote sensing image matching based on contourlet transform and Tsallis entropy
原文传递
导出
摘要 提出了一种利用Contourlet变换、Tsallis熵和改进粒子群优化的多源遥感图像匹配算法。在分别对参考图像和目标图像进行Contourlet分解的基础上,以基于Tsallis熵的互信息量作为相似性度量准则,利用改进的带极值扰动的简化粒子群优化算法对低分辨率的遥感图像进行匹配操作,逐级上推,最终实现全分辨率情况下多源遥感图像的匹配。实验结果表明,与常用的遥感图像匹配算法相比,该算法匹配精度高,稳健性好,且运算量大幅减少。 There are a lot of differences in multi-source remote sensing images from various sensors about the same scene. Maximization of mutual information can be used for the multi-source image matching, but the accuracy and efficiency of image matching need to be further improved. Therefore, an algorithm for multi-source remote sensing image matching was proposed in this paper, based on contourlet transform, Tsallis entropy based mutual information and improved particle swarm optimization. Firstly, the target image and reference image were decomposed to the low resolution image using contourlet transform, respec-tively. Then, a new image similarity measure criterion, the Tsallis entropy based mutual information, was used to achieve the global optimization. Meanwhile, a modified extremum disturbed and simple particle swarm optimization algorithm was applied to match the lowest resolution remote sensing images. Based on the preliminary result, the matching between the higher resolu-tion images could be implemented stepwise up to the full resolution images. The experimental results show that, compared with those of other existing remote sensing image matching methods, the proposed algorithm has the high accuracy, strong robustness and requires much fewer operations.
作者 吴一全 陈飒
出处 《遥感学报》 EI CSCD 北大核心 2010年第5期893-904,共12页 NATIONAL REMOTE SENSING BULLETIN
基金 国家自然科学基金资助项目"The National Natural Science Foundation ofChina"资助(No.60872065)~~
关键词 多源遥感图像匹配 CONTOURLET变换 TSALLIS熵 粒子群优化 multi-source remote sensing image matching contourlet transform Tsallis entropy particle swarm optimization
  • 相关文献

参考文献6

二级参考文献49

  • 1冯林,严亮,黄德根,贺明峰,滕弘飞.PSO和Powell混合算法在医学图像配准中的应用研究[J].北京生物医学工程,2005,24(1):8-12. 被引量:13
  • 2赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 3王雪梅,王义和.模拟退火算法与遗传算法的结合[J].计算机学报,1997,20(4):381-384. 被引量:123
  • 4Mallat S. A theory for multiresolution signal decompositlon: The wavelet representation[J]. IEEE Trans. on PAMI, 1989, 11(7):674 - 693.
  • 5Chalermwat P, El-Ghazawi T, Le Moigne J. Two-phase genetic algorithm-based image registration on parallel clusters. Journal of Future Generation Computing Systems, 2001, 17:467 - 476.
  • 6Brumby S, Theiler J, Perkins S, et al. Investigation of feature extraction by a genetic algorithm, 1999, Proc. SPIE, 3812:24- 31.
  • 7Mitre S K, Murthy C A, Kundu M K. Technique for fractal image compression using genetic algorithm. IEEE Trans. on Image Processing, 1998, 7(4): 586 - 593.
  • 8Mallat S, Zhong Siren. Characterization of signals from multiscale edges[J]. IEEE Trans. on PAMI, 1992, 14(7): 710-732.
  • 9Holland J H. Adaptation in Natural and Artificial System. Ann Arbor: University of Michigan Press, 1975:30 - 58.
  • 10Pratt W K. Correlation Techniques of Image Registration. IEEE Trans. on Aerospace and Electronics Systems, 1974, AES-10(3):353 - 358.

共引文献829

同被引文献75

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部